首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We develop and investigate the performance of a hybrid solution framework for solving mixed-integer linear programming problems. Benders decomposition and a genetic algorithm are combined to develop a framework to compute feasible solutions. We decompose the problem into a master problem and a subproblem. A genetic algorithm along with a heuristic are used to obtain feasible solutions to the master problem, whereas the subproblem is solved to optimality using a linear programming solver. Over successive iterations the master problem is refined by adding cutting planes that are implied by the subproblem. We compare the performance of the approach against a standard Benders decomposition approach as well as against a stand-alone solver (Cplex) on MIPLIB test problems.  相似文献   

2.
Biopharmaceutical manufacturing requires high investments and long-term production planning. For large biopharmaceutical companies, planning typically involves multiple products and several production facilities. Production is usually done in batches with a substantial set-up cost and time for switching between products. The goal is to satisfy demand while minimising manufacturing, set-up and inventory costs. The resulting production planning problem is thus a variant of the capacitated lot-sizing and scheduling problem, and a complex combinatorial optimisation problem. Inspired by genetic algorithm approaches to job shop scheduling, this paper proposes a tailored construction heuristic that schedules demands of multiple products sequentially across several facilities to build a multi-year production plan (solution). The sequence in which the construction heuristic schedules the different demands is optimised by a genetic algorithm. We demonstrate the effectiveness of the approach on a biopharmaceutical lot sizing problem and compare it with a mathematical programming model from the literature. We show that the genetic algorithm can outperform the mathematical programming model for certain scenarios because the discretisation of time in mathematical programming artificially restricts the solution space.  相似文献   

3.
We consider a supply chain setting where multiple uncapacitated facilities serve a set of customers with a single product. The majority of literature on such problems requires assigning all of any given customer??s demand to a single facility. While this single-sourcing strategy is optimal under linear (or concave) cost structures, it will often be suboptimal under the nonlinear costs that arise in the presence of safety stock costs. Our primary goal is to characterize the incremental costs that result from a single-sourcing strategy. We propose a general model that uses a cardinality constraint on the number of supply facilities that may serve a customer. The result is a complex mixed-integer nonlinear programming problem. We provide a generalized Benders decomposition algorithm for the case in which a customer??s demand may be split among an arbitrary number of supply facilities. The Benders subproblem takes the form of an uncapacitated, nonlinear transportation problem, a relevant and interesting problem in its own right. We provide analysis and insight on this subproblem, which allows us to devise a hybrid algorithm based on an outer approximation of this subproblem to accelerate the generalized Benders decomposition algorithm. We also provide computational results for the general model that permit characterizing the costs that arise from a single-sourcing strategy.  相似文献   

4.
Assigning multiple service facilities to demand points is important when demand points are required to withstand service facility failures. Such failures may result from a multitude of causes, ranging from technical difficulties to natural disasters. The α-neighbor p-center problem deals with locating p service facilities. Each demand point is assigned to its nearest α service facilities, thus it is able to withstand up to α − 1 service facility failures. The objective is to minimize the maximum distance between a demand point and its αth nearest service facility. We present two optimal algorithms for both the continuous and discrete α-neighbor p-center problem. We present experimental results comparing the performance of the two optimal algorithms for α = 2. We also present experimental results showing the performance of the relaxation algorithm for α = 1, 2, 3.  相似文献   

5.
We consider a mathematical model similar in a sense to competitive location problems. There are two competing parties that sequentially open their facilities aiming to “capture” customers and maximize profit. In our model, we assume that facilities’ capacities are bounded. The model is formulated as a bilevel integer mathematical program, and we study the problem of obtaining its optimal (cooperative) solution. It is shown that the problem can be reformulated as that of maximization of a pseudo-Boolean function with the number of arguments equal to the number of places available for facility opening. We propose an algorithm for calculating an upper bound for values that the function takes on subsets which are specified by partial (0, 1)-vectors.  相似文献   

6.
In the p-Median Problem, it is assumed that, once the facilities are opened, they may not fail. In practice some of the facilities may become unavailable due to several factors. In the Reliability p-Median Problem some of the facilities may not be operative during certain periods. The objective now is to find facility locations that are both inexpensive and also reliable. We present different configurations of two hybrid metaheuristics to solve the problem, a genetic algorithm and a scatter search approach. We have carried out an extensive computational experiment to study the performance of the algorithms and compare its efficiency solving well-known benchmark instances.  相似文献   

7.
In this paper, we consider the problem of developing efficient and optimal parallel algorithms for Cholesky decomposition. We design our algorithms based on different data layouts and methods. We thereotically analyze the run-time of each algorithm. In order to determine the optimality of the algorithms designed, we derive theoretical lower bounds on running time based on initial data layout and compare them against the algorithmic run-times. To address portability, we design our algorithms and perform complexity analysis on the LogP model. Lastly, we implement our algorithms and analyze performance data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We investigate a logistics facility location problem to determine whether the existing facilities remain open or not, what the expansion size of the open facilities should be and which potential facilities should be selected. The problem is formulated as a mixed integer linear programming model (MILP) with the objective to minimize the sum of the savings from closing the existing facilities, the expansion costs, the fixed setup costs, the facility operating costs and the transportation costs. The structure of the model motivates us to solve the problem using Benders decomposition algorithm. Three groups of valid inequalities are derived to improve the lower bounds obtained by the Benders master problem. By separating the primal Benders subproblem, different types of disaggregated cuts of the primal Benders cut are constructed in each iteration. A high density Pareto cut generation method is proposed to accelerate the convergence by lifting Pareto-optimal cuts. Computational experiments show that the combination of all the valid inequalities can improve the lower bounds significantly. By alternately applying the high density Pareto cut generation method based on the best disaggregated cuts, the improved Benders decomposition algorithm is advantageous in decreasing the total number of iterations and CPU time when compared to the standard Benders algorithm and optimization solver CPLEX, especially for large-scale instances.  相似文献   

9.
In this paper, we consider relocating facilities, where we have demand changes in the network. Relocations are performed by closing some of the existing facilities from low demand areas and opening new ones in newly emerging areas. However, the actual changes of demand are not known in advance. Therefore, different scenarios with known probabilities are used to capture such demand changes. We develop a mixed integer programming model for facility relocation that minimizes the expected weighted distance while making sure that relative regret for each scenario is no greater than γ. We analyzed the problem structure and developed a Lagrangian Decomposition Algorithm (LDA) to expedite the solution process. Numerical experiments are carried out to show the performance of LDA against the exact solution method.  相似文献   

10.
In the mathematical model under study, the two competing sides consecutively place their facilities aiming to capture consumers and maximize profits. The model amounts to a bilevel integer programming problem. We take the optimal noncooperative solutions as optimal to this problem. To find approximate and optimal solutions, we propose a branch-and-bound algorithm. Simulations show that the algorithm can be applied to solve the individual problems of low and medium dimension.  相似文献   

11.
带覆盖需求约束的设施选址问题(FLPWCDL)研究:客户必须在规定的响应半径内被服务,并要求服务站能够覆盖规定的需求数量,如何选择合适的服务站,使总成本(建站成本+路线成本)最小.FLPWCDL广泛应用于应急服务、物流、便利店等服务站的选址.建立了问题的混合整数规划模型,并构造了求解FLPWCDL的Benders分解算法,计算实验显示Benders分解算法具有非常高的求解效率与求解质量.  相似文献   

12.
In this paper we consider the problem of designing parking facilities for park'n ride trips. We present a new continuous equilibrium network design problem to decide the capacity and fare of these parking lots at a tactical level. We assume that the parking facilities have already been located and other topological decisions have already been taken.The modeling approach proposed is mathematical programming with equilibrium constraints. In the outer optimization problem, a central Authority evaluates the performance of the transport network for each network design decision. In the inner problem a multimodal traffic assignment with combined modes, formulated as a variational inequality problem, generates the share demand for modes of transportation, and for parking facilities as a function of the design variables of the parking lots. The objective is to make optimal parking investment and pricing decisions in order to minimize the total travel cost in a subnetwork of the multimodal transportation system.We present a new development in model formulation based on the use of generalized parking link cost as a design variable.The bilevel model is solved by a simulated annealing algorithm applied to the continuous and non-negative design decision variables. Numerical tests are reported in order to illustrate the use of the model, and the ability of the approach to solve applications of moderate size.  相似文献   

13.
We present a branch-and-bound algorithm for discretely-constrained mathematical programs with equilibrium constraints (DC-MPEC). This is a class of bilevel programs with an integer program in the upper-level and a complementarity problem in the lower-level. The algorithm builds on the work by Gabriel et al. (Journal of the Operational Research Society 61(9):1404–1419, 2010) and uses Benders decomposition to form a master problem and a subproblem. The new dynamic partition scheme that we present ensures that the algorithm converges to the global optimum. Partitioning is done to overcome the non-convexity of the Benders subproblem. In addition Lagrangean relaxation provides bounds that enable fathoming in the branching tree and warm-starting the Benders algorithm. Numerical tests show significantly reduced solution times compared to the original algorithm. When the lower level problem is stochastic our algorithm can easily be further decomposed using scenario decomposition. This is demonstrated on a realistic case.  相似文献   

14.
A B-spline approach for empirical mode decompositions   总被引:16,自引:0,他引:16  
We propose an alternative B-spline approach for empirical mode decompositions for nonlinear and nonstationary signals. Motivated by this new approach, we derive recursive formulas of the Hilbert transform of B-splines and discuss Euler splines as spline intrinsic mode functions in the decomposition. We also develop the Bedrosian identity for signals having vanishing moments. We present numerical implementations of the B-spline algorithm for an earthquake signal and compare the numerical performance of this approach with that given by the standard empirical mode decomposition. Finally, we discuss several open mathematical problems related to the empirical mode decomposition. Dedicated to Professor Charles A. Micchelli on the occasion of his 60th birthday with friendship and esteem Mathematics subject classification (2000) 94A12. Supported in part by National Aeronautics and Space Administration under grant NAG5-5364, and National Science Foundation under grants NSF0314742 and NSF0312113. Yuesheng Xu: Corresponding author. Supported in part by Natural Science Foundation of China under grant 10371122.  相似文献   

15.
We present a robust model for determining the optimal order quantity and market selection for short-life-cycle products in a single period, newsvendor setting. Due to limited information about demand distribution in particular for short-life-cycle products, stochastic modeling approaches may not be suitable. We propose the minimax regret multi-market newsvendor model, where the demands are only known to be bounded within some given interval. In the basic version of the problem, a linear time solution method is developed. For the capacitated case, we establish some structural results to reduce the problem size, and then propose an approximation solution algorithm based on integer programming. Finally, we compare the performance of the proposed minimax regret model against the typical average-case and worst-case models. Our test results demonstrate that the proposed minimax regret model outperformed the average-case and worst-case models in terms of risk-related criteria and mean profit, respectively.  相似文献   

16.
We consider a generalized version of the rooted connected facility location problem which occurs in planning of telecommunication networks with both survivability and hop-length constraints. Given a set of client nodes, a set of potential facility nodes including one predetermined root facility, a set of optional Steiner nodes, and the set of the potential connections among these nodes, that task is to decide which facilities to open, how to assign the clients to the open facilities, and how to interconnect the open facilities in such a way, that the resulting network contains at least λ edge-disjoint paths, each containing at most H edges, between the root and each open facility and that the total cost for opening facilities and installing connections is minimal. We study two IP models for this problem and present a branch-and-cut algorithm based on Benders decomposition for finding its solution. Finally, we report computational results.  相似文献   

17.
We study the spherical facility location problem which is a more realistic model than the Euclidean facilities location. We present a modified algorithm for this problem, which has the following good properties: (a) It is very easy to initialize the algorithm with an arbitrary point as its starting point; (b) Under suitable assumptions, it is proved that the algorithm globally converges to a global minimizer of the problem.  相似文献   

18.
A mixed binary integer mathematical programming model is developed in this paper for ordering items in multi-item multi-period inventory control systems, in which unit and incremental quantity discounts as well as interest and inflation factors are considered. Although the demand rates are assumed deterministic, they may vary in different periods. The situation considered for the problem at hand is similar to a seasonal inventory control model in which orders and sales happen in a given season. To make the model more realistic, three types of constraints including storage space, budget, and order quantity are simultaneously considered. The goal is to find optimal order quantities of the products so that the net present value of total system cost over a finite planning horizon is minimized. Since the model is NP-hard, a genetic algorithm (GA) is presented to solve the proposed mathematical problem. Further, since no benchmarks can be found in the literature to assess the performance of the proposed algorithm, a branch and bound and a simulated annealing (SA) algorithm are employed to solve the problem as well. In addition, to make the algorithms more effective, the Taguchi method is utilized to tune different parameters of GA and SA algorithms. At the end, some numerical examples are generated to analyze and to statistically and graphically compare the performances of the proposed solving algorithms.  相似文献   

19.
We consider the uncertain least cost shipping problem. The input is a multi-item supply chain network with time-evolving uncertain costs and capacities. Exploiting the operational law of uncertainty theory, a mathematical model of the problem is established and the indeterminacy factors are tackled. We use the scaling idea together with transformation approach and uncertainty programming to develop a hybrid algorithm to optimize and obtain the uncertainty distribution of the total shipping cost. We analyze the practical performance of the algorithm and present an illustrative example.  相似文献   

20.
For real world railroad networks, we consider minimizing operational cost of train schedules which depend on choosing different train types of diverse speed and cost. We develop a mixed integer linear programming model for this train scheduling problem. For practical problem sizes, it seems to be impossible to directly solve the model within a reasonable amount of time. However, suitable decomposition leads to much better performance. In the first part of the decomposition, only the train type related constraints stay active. In the second part, using an optimal solution of this relaxation, we select and fix train types and try to generate a train schedule satisfying the remaining constraints. This decomposition idea provides the cornerstone for an algorithm integrating cutting planes and branch-and-bound. We present computational results for railroad networks from Germany and the Netherlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号