首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helium-3 nuclear magnetic resonance (3He NMR) measurements were carried out for the gaseous mixtures of helium-3 with pure nitrogen and synthetic air as the solvents. It was found that 3He shielding is linearly dependent on solvent density up to approx. 6 mol/L. At higher density of the gaseous solvent, the change of 3He shielding is nonlinear and especially distinct when helium-3 atoms can interact with two O2 molecules. The interaction with paramagnetic oxygen molecules can induce two kinds of 3He shielding changes: (1) due to the isotropic Fermi contact interaction and (2) from the dipolar magnetic interaction between unpaired O2 electrons and 3He nuclear magnetic dipole moment. The two paramagnetic effects in helium-3 shielding cannot be experimentally separated, although for such small molecular objects, they could be presumably modeled by advanced theoretical calculations.  相似文献   

2.
3He, 129Xe and 131Xe NMR measurements of resonance frequencies in the magnetic field B0 = 11.7586 T in different gas phase mixtures have been reported. Precise radiofrequency values were extrapolated to the zero gas pressure limit. These results combined with new quantum chemical values of helium and xenon nuclear magnetic shielding constants were used to determine new accurate nuclear magnetic moments of 129Xe and 131Xe in terms of that of the 3He nucleus. They are as follows: μ(129Xe) = ?0.7779607(158)μN and μ(131Xe) = +0.6918451(70)μN. By this means, the new ‘helium method’ for estimations of nuclear dipole moments was successfully tested. Gas phase NMR spectra demonstrate the weak intermolecular interactions observed on the 3He and 129Xe and 131Xe shielding in the gaseous mixtures with Xe, CO2 and SF6. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Gas-phase 21Ne nuclear magnetic resonance spectra were measured at the natural abundance of 21Ne isotope for samples consisting of pressurized neon up to 60 bar at room temperature and applying the magnetic field of the strength B0 = 11.7574 T. It showed that the nuclear magnetic resonance frequency is linearly dependent on the density of gaseous neon. The resonance frequency was extrapolated to the zero-density point, and it permitted the determination of the 21Ne nuclear magnetic moment, μ(21Ne) = 0.6617774(10) μN. The present value of μ(21Ne) is not influenced by the bulk magnetic susceptibility of neon and interactions between neon atoms; therefore, it is more precise and reliable than the previous result obtained for μ(21Ne).  相似文献   

4.
Rotational spectra have been assigned for the 82Kr, 83Kr, 84Kr, and 86Kr isotopic species of the KrHF and KrDF van der Waals molecules by using pulsed microwave Fourier transform spectroscopy in a Fabry—Perot cavity with a pulsed supersonic nozzle molecular source. The rotational, centrifugal distortion, nuclear spin—spin, and nuclear quadrupole coupling constants are used to determine the structure and obtain intramolecular potential binding information. The 83Kr nuclear quadrupole coupling constants are 10.28 ± 0.08 MHz and 13.83 ± 0.13 MHz for KrHF and KrDF respectively. The electric field gradient at the krypton nucleus is calculated from the coupling constant and the known nuclear quadrupole moment and explained by Sternheimer shielding and formation of the van der Waals bond. There is a negligible charge transfer in the KrHF bond.  相似文献   

5.
Because of their unique chemical and physical properties, long-lived rare krypton radioisotopes, 85Kr and 81Kr, are ideal tracers for environmental samples, including air, groundwater and ice. Atom trap trace analysis (ATTA) is a new laser-based method for counting both 85Kr and 81Kr atoms with the abundance as low as 10-14 with micro-liters (STP) krypton gas. The entire system for rare radio-krypton measurement built at Hefei is presented, including the atom trap trace analysis instrument and sampling apparatus of gas extraction from water and krypton purification. Atmospheric85Kr concentrations at different places in China were measured, showing a range of 1.3-1.6 Bq/m3, consistent with the northern hemispheric baseline. As a demonstration of the system, some shallow and deep groundwater samples in north and south China were sampled and dated.  相似文献   

6.
We have performed the direct measurements of 13C magnetic shielding for pure liquid TMS, solution of 1% TMS in CDCl3 and solid fullerene. The measurements were carried out in spherical ampoules exploring the relation between the resonance frequencies, shielding constants and magnetic moments of 13C and 3He nuclei. Next the 13C shielding constants of glycine, hexamethylbenzene and adamantane were established on the basis of appropriate chemical shifts measured in the solid state. All the new results are free from susceptibility effects and can be recommended as the reference standards of 13C shielding scale in the magic angle spinning NMR experiments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Hartree–Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange‐correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin‐orbit zeroth‐order regular approximation Hamiltonian in combination with the large Slater‐type basis set QZ4P as well as with the four‐component Dirac–Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization‐consistent basis sets aug‐pcSseg‐4 for He, Ne and Ar, aug‐pcSseg‐3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero‐point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Photoinjection measurements show that in liquid and gaseous krypton and xenon V0 is negative. V0 has a minimum (?0.77 eV for Xe and ?0.53 eV for Kr) near the density of the mobility maximum, becoming zero at densities of the order of 1020 atoms/cm3.  相似文献   

9.
For the first time, a hyperpolarized (hp) noble gas with a nuclear electric quadrupole moment is available for high-field nuclear-magnetic-resonance (NMR) spectroscopy and magnetic-resonance imaging. Hp (83)Kr (I=92) is generated by spin-exchange optical pumping and separated from the rubidium vapor used in the pumping process. Optical pumping occurs under the previously unstudied condition of high krypton gas densities. Signal enhancements of more than three orders of magnitude compared to the thermal equilibrium (83)Kr signal at 9.4 T magnetic-field strength are obtained. The spin-lattice relaxation of (83)Kr is caused primarily by quadrupolar couplings during the brief adsorption periods of the krypton atoms on the surrounding container walls and significantly limits the currently obtained spin polarization. Measurements in macroscopic glass containers and in desiccated canine lung tissue at field strengths between 0.05 and 3 T using remotely detected hp (83)Kr NMR spectroscopy reveal that the longitudinal relaxation dramatically accelerates as the magnetic-field strength decreases.  相似文献   

10.
The role of theory level in prediction of benzene magnetic indexes of aromaticity is analysed and compared with calculated nuclear magnetic shieldings of 3He used as NMR probe. Three closely related nucleus‐independent chemical shift (NICS) based indexes were calculated for benzene at SCF‐HF, MP2, and DFT levels of theory and the impact of basis set on these quantities was studied. The changes of benzene NICS(0), NICS(1), and NICS(1)zz parameters calculated using SCF‐HF, MP2 and several density functionals were within 1 to 3 ppm. Similar deviations between magnetic indexes of aromaticity were observed for values calculated with selected basis sets. Only very small effect of polar solvent on benzene aromaticity was predicted. The 3He nuclear magnetic isotropic shielding (σ) and its zz‐components (σzz) of helium atom approaching the centre of benzene ring from above produced similar curves versus benzene‐He distance to NICS parameters calculated for similarly moving Bq ghost atom. We also propose an experimental verification of NICS calculations by designing the 3He NMR measurement for benzene saturated with helium gas or in low temperature matrices.  相似文献   

11.
The 33S NMR signal of gaseous carbonyl sulfide (COS) was monitored as a function of density for the first time. An extrapolation to the zero‐density limit permitted the measurement of nuclear magnetic shielding of an isolated COS molecule. An improved 33S shielding scale was established taking the value of 817(12) ppm as the absolute shielding of COS. The new 33S shielding scale is certainly more accurate than any previous estimation and contains some reference standards, e.g. an isolated SF6 molecule, a saturated solution of (NH4)2SO4 in D2O, 2 M aqueous Cs2SO4 solution or liquid SF6, CS2 and SO2. The latter results can be applied for the easy estimation of sulfur shielding available from all the measurements of 33S NMR chemical shifts. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Ab initio values of the absolute shielding constants of phosphorus and hydrogen in PH(3) were determined, and their accuracy is discussed. In particular, we analyzed the relativistic corrections to nuclear magnetic resonance (NMR) shielding constants, comparing the constants computed using the four-component Dirac-Hartree-Fock approach, the four-component density functional theory (DFT), and the Breit-Pauli perturbation theory (BPPT) with nonrelativistic Hartree-Fock or DFT reference functions. For the equilibrium geometry, we obtained σ(P) = 624.309 ppm and σ(H) = 29.761 ppm. Resonance frequencies of both nuclei were measured in gas-phase NMR experiments, and the results were extrapolated to zero density to provide the frequency ratio for an isolated PH(3) molecule. This ratio, together with the computed shielding constants, was used to determine a new value of the nuclear magnetic dipole moment of (31)P: μ(P) = 1.1309246(50) μ(N).  相似文献   

13.
The 83Kr nuclear quadrupole coupling constant in KrHF has been measured to be x = 10.227(71) MHz. Using the known 83Kr nuclear quadrupole moment, the field gradient at the Kr nucleus is evaluated and interpreted in terms of charge transfer in the weak Kr-HF van der Waals bond. Rotational assignments are reported for 82Kr, 83Kr, 84Kr, and 86Kr isotopic KrHF.  相似文献   

14.
We report the charge state distributions of the pure, 25% and 50% oxygen mixed krypton plasma to shed more light on the understanding of the gas mixing and the isotope anomaly [A. G. Drentje, Rev. Sci. Instrum. 63 (1992) 2875 and Y Kawai, D Meyer, A Nadzeyka, U Wolters and K Wiesemann, Plasma Sources Sci. Technol. 10 (2001) 451] in the electron cyclotron resonance (ECR) plasmas. The krypton plasma was produced using a 10 GHz all‐permanent‐magnet ECR ion source. The intensities of the highly abundant four isotopes, viz. 82Kr (~11.58%), 83Kr (~11.49%), 84Kr (~57%) and 86Kr (17.3%) up to ~ +14 charge state have been measured by extracting the ions from the plasma and analysing them in the mass and the energy using a large acceptance analyzer‐cum‐switching dipole magnet. The influence of the oxygen gas mixing on the isotopic krypton ion intensities is clearly evidenced beyond +9 charge state. With and without oxygen mixing, the charge state distribution of the krypton ECR plasma shows the isotope anomaly with unusual trends. The anomaly in the intensities of the isotopes having quite closer natural abundance, viz. 82Kr, 86Kr and 83Kr, 86Kr is prominent, whereas the intensity ratio of 86Kr to 84Kr shows a weak signature of it. The isotope anomaly tends to disappear with increasing oxygen mixing in the plasma. The observed trends in the intensities of the krypton isotopes do not follow the prediction of linear Landau wave damping in the plasma. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.

Abstract  

Density functional theory (DFT) calculations were performed to determine boron-11 and nitrogen-14 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) spectroscopy parameters in the three most stable B24N24 fullerenes for the first time. The considered samples were first allowed to relax entirely, and then the NMR and NQR calculations were performed on the geometrically optimized models. The calculations of the 11B and 14N nuclear magnetic shielding tensors and electric field gradient tensors employed the Gaussian 98 software implementation of the gauge-including atomic orbital (GIAO) method using the Becke3, Lee-Yang-Parr (B3LYP) DFT level and 6-311G** and 6-311++G** standard basis sets in each of the three optimized forms, and converted the results to experimentally measurable NMR parameters.The calculated NMR chemical shieldings of the three cages show significant differences, providing a way to identify these clusters. The evaluated NQR parameters of the 11B and 14N nuclei in the clusters are also reported and discussed.  相似文献   

16.
Lanthanum‐139 NMR spectra of stationary samples of several solid LaIII coordination compounds have been obtained at applied magnetic fields of 11.75 and 17.60 T. The breadth and shape of the 139La NMR spectra of the central transition are dominated by the interaction between the 139La nuclear quadrupole moment and the electric field gradient (EFG) at that nucleus; however, the influence of chemical‐shift anisotropy on the NMR spectra is non‐negligible for the majority of the compounds investigated. Analysis of the experimental NMR spectra reveals that the 139La quadrupolar coupling constants (CQ) range from 10.0 to 35.6 MHz, the spans of the chemical‐shift tensor (Ω) range from 50 to 260 ppm, and the isotropic chemical shifts (δiso) range from ?80 to 178 ppm. In general, there is a correlation between the magnitudes of CQ and Ω, and δiso is shown to depend on the La coordination number. Magnetic‐shielding tensors, calculated by using relativistic zeroth‐order regular approximation density functional theory (ZORA‐DFT) and incorporating scalar only or scalar plus spin–orbit relativistic effects, qualitatively reproduce the experimental chemical‐shift tensors. In general, the inclusion of spin–orbit coupling yields results that are in better agreement with those from the experiment. The magnetic‐shielding calculations and experimentally determined Euler angles can be used to predict the orientation of the chemical‐shift and EFG tensors in the molecular frame. This study demonstrates that solid‐state 139La NMR spectroscopy is a useful characterization method and can provide insight into the molecular structure of lanthanum coordination compounds.  相似文献   

17.
Fifteen density functional theory (DFT) methods and fifteen long-range corrected density functional theory (LC-DFT) methods were used in the present work to assess nuclear magnetic resonance parameters such as nuclear shielding constant (NSC), nuclear chemical shift (NCS), and nuclear anisotropic shielding constant (NAS). These different methods were associated with the full basis set 6-311++G(3df,3pd). The gauge-independent atomic orbital was used for the calculation of nuclear shielding tensors of the nuclei contained in the stereoisomers cis- and trans-CHClCHCF3. Thus, the effects of LC are clearly observed for heavy nuclei (13C, 19F, 35Cl). The results of NSC, NCS, and NAS from DFT are better described than LC-DFT with regard to the KT3 method. Moreover, the results from the LC-DFT are better described than the standard DFT with regard to CCSD(T). Based on the latter method used as the benchmark, the NSCs of nuclei are well fitted by the competitive functionals LC-TPSSTPSS and LC-PKZBPKZB. In the particular case of the trans-isomer, mPWPKZB was found to be the best method. For the NCSs, the more accurate methods include the latter two LC functionals and the non-LC functionals TPSSTPSS and mPWPKZB. The accuracy of NAS depends strongly on the nuclei. Thus, CAM-B3LYP describes it well for 19F and LC-PKZBPKZB for 35Cl. The rest of nuclei are well fitted by all the methods except 13C1 and 13C2, which are better reproduced by the LC-DFT except the LC-PKZBPKZB, LC-TPSSTPSS, and CAM-B3LYP functionals.  相似文献   

18.
The substituent electronic effects of trimethylenemethaneiron tricarbonyl [TMMFe(CO)3] have been studied, with σ values reported. Determination of these values was accomplished through three different techniques: a study of acidity relative to benzoic acid with TMMFe(CO)3 acting as a substituent of benzoic acid; 19F-nuclear magnetic resonance (NMR) shielding analysis of m-fluorophenylTMMFe(CO)3; and 13C-NMR shielding analysis of phenylTMMFe(CO)3. The TMMFe(CO)3 group behaves in much the same manner as a phenyl group (i.e. weakly electron releasing by resonance and weakly electron attracting by induction). The syntheses of the substituted phenyltrimethyleneiron tricarbonyl compounds are described.  相似文献   

19.
UO2+–solvent complexes having the general formula [UO2(ROH)]+ (R=H, CH3, C2H5, and n‐C3H7) are formed using electrospray ionization and stored in a Fourier transform ion cyclotron resonance mass spectrometer, where they are isolated by mass‐to‐charge ratio, and then photofragmented using a free‐electron laser scanning through the 10 μm region of the infrared spectrum. Asymmetric O=U=O stretching frequencies (ν3) are measured over a very small range [from ~953 cm?1 for H2O to ~944 cm?1 for n‐propanol (n‐PrOH)] for all four complexes, indicating that the nature of the alkyl group does not greatly affect the metal centre. The ν3 values generally decrease with increasing nucleophilicity of the solvent, except for the methanol (MeOH)‐containing complex, which has a measured ν3 value equal to that of the n‐PrOH‐containing complex. The ν3 frequency values for these U(V) complexes are about 20 cm?1 lower than those measured for isoelectronic U(VI) ion‐pair species containing analogous alkoxides. ν3 values for the U(V) complexes are comparable to those for the anionic [UO2(NO3)3]? complex, and 40–70 cm?1 lower than previously reported values for ligated uranyl(VI) dication complexes. The lower frequency is attributed to weakening of the O?U?O bonds by repulsion related to reduction of the U metal centre, which increases electron density in the antibonding π* orbitals of the uranyl moiety. Computational modelling of the ν3 frequencies using the B3LYP and PBE functionals is in good agreement with the IRMPD measurements, in that the calculated values fall in a very small range and are within a few cm?1 of measurements. The values generated using the LDA functional are slightly higher and substantially overestimate the trends. Subtleties in the trend in ν3 frequencies for the H2O–MeOH–EtOH–n‐PrOH series are not reproduced by the calculations, specifically for the MeOH complex, which has a lower than expected value.  相似文献   

20.
Kr atoms were produced in their metastable states 4p55s [3/2]2 and 4p55s’ [1/2]0 in a pulsed DC discharge in a beam, and subsequently excited to the even-parity autoionizing Rydberg states 4p5 np′ [3/2]1,2, [1/2]1 and 4p5 nf′ [5/2]3 using single photon excitation. The excitation spectra of the even-parity autoionizing resonance series from the metastable Kr were obtained by recording the autoionized Kr+ ions with time-of-flight ion detection in the photon energy range of 29000–40000 cm−1. A wealth of autoionizing resonances were newly observed, from which more precise and more systematic spectroscopic data of the level energy and quantum defects were derived. Supported by the National Natural Science Foundation of China (Grant No. 20673107), the National Key Basic Research Special Foundation of China (Grant No. 2007CB815203), and Chinese Academy of Sciences (Grant No. KJCX2-SW-H08)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号