首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The paper performs analytical and numerical investigation of the true and spurious eigensolutions of an elliptical membrane using the real-part boundary integral equation method (BIEM) following the successful work on a circular case by using the dual boundary element method (BEM) (Kuo et al. in Int. J. Numer. Methods Eng. 48:1401–1422, 2000). We extend to the elliptical case in this paper. To analytically study the eigenproblems of an elliptical membrane, the elliptical coordinates and Mathieu functions are adopted. The fundamental solution is expanded into the degenerate kernel by using the elliptical coordinates and the boundary densities are expanded by using the eigenfunction expansion. The Jacobian terms may exist in the degenerate kernel, boundary density and boundary contour integration but they can cancel each other out. Therefore, the orthogonal relations are reserved in the boundary contour integral. It is interesting to find that the BIEM using the real or the imaginary-part kernel to deal with an elliptical membrane yields spurious eigensolutions. This finding agrees with those corresponding to the circular case. The spurious eigenvalues in the real-part BIEM are found to be the zeros of the mth-order (even or odd) modified Mathieu functions of the second kind or their derivatives. To verify this finding, the BEM is implemented. Furthermore, the commercial finite-element code ABAQUS is also utilized to provide eigensolutions for comparisons. It is found that good agreement is obtained.  相似文献   

2.
Boundary integral equations and boundary element methods were employed analytically, semi-analytically and numerically to study the occurrence of fictitious frequency for the exterior Helmholtz equations subject to the mixed-type boundary conditions. A semi-infinite rod and a circular radiator of problems were addressed. Degenerate kernel of the fundamental solution and Fourier series for boundary density were utilized in the null-field integral equation to examine the occurrence of fictitious frequency semi-analytically. The BEM was utilized to solve the solution numerically. The CHIEF technique and Burton and Miller method were adopted to suppress the occurrence of the fictitious frequency. It is emphasized that the occurrence of fictitious frequency depend on the adopted method (singular or hypersingular formulation) no matter what the given type of boundary condition for the problem is. The illustrative examples were tested to verify this finding successfully.  相似文献   

3.
边界约束刚度不确定的结构振动特征值   总被引:2,自引:0,他引:2  
利用摄动法 ,将随机的微分方程和边界条件化为一系列的确定性微分方程和边界条件。运用有限元离散方法 ,推导了统计特征值的二阶摄动近似表达 ,用算例对本文方法进行了说明并和 Monte-Carlo模拟法结果进行了比较  相似文献   

4.
The elaborated collocation multipole method is employed to obtain a semi-analytical solution, involving proper products of angular and radial Mathieu functions, for the free flexural vibrations of a fully clamped thin elastic plate of elliptical planform containing multiple elliptical cutouts of arbitrary size, location, and orientation. The problem boundary conditions are satisfied by uniformly collocating points on the boundaries, and exactly calculating the normal derivative of plate displacement at the collocation points through use of appropriate directional derivative in each coordinate system. The multipole expansion is truncated to yield a coupled algebraic linear system of equations that is then solved for the nontrivial eigensolutions. Extensive numerical simulations present the first three calculated natural frequencies and the associated deformed mode shapes of an elliptical plate with elliptical/circular cutouts, for a wide range of plate/cutout aspect ratios, and cutout location/orientation parameters. The accuracy of solutions is checked through appropriate convergence studies, and the validity of results is established with the aid of a commercial finite element package as well as by comparison with the data available in the existing literature.  相似文献   

5.
Wei-Ming Lee 《Meccanica》2014,49(7):1617-1628
This paper presents a semi-analytical approach to solve the eigenproblem of a two-dimensional acoustic cavity with smoothly varying boundaries. The multipole expansion for the acoustic pressure is formulated in terms of Bessel and Hankel functions to satisfy the Helmholtz equation in the polar coordinate system. Rather than using the addition theorem, the multipole method and directional derivative are both combined to propose a generalized multipole method in which the acoustic pressure and its normal derivative with respect to non-local polar coordinates can be calculated. The boundary conditions are satisfied by uniformly collocating points on the boundaries. By truncating the multipole expansion, a finite linear algebraic system is acquired. The direct searching approach is applied to identify the natural frequencies using the singular value decomposition technique. Several numerical examples are presented, including those of an annulus cavity, a confocal elliptical annulus cavity and an arbitrarily shaped cavity with an inner elliptical boundary. The accuracy and numerical convergence of the proposed method are validated by comparison with results of the available analytical method and the commercial finite-element code ABAQUS. No spurious eigensolutions are found in the proposed formulation. Due to its semi-analytical character, excellent accuracy and fast rate of convergence are the main features of the proposed method.  相似文献   

6.
We study parametric oscillations of linear systems with one degree of freedom for large values of the modulation coefficient. We use the classical analytic Lyapunov-Poincaré perturbation methods and an original numerically-analytic method of accelerated convergence to construct periodic solutions and the corresponding eigenvalues. We find the boundaries of stability and instability domains. We use specific models to illustrate the main properties of parametric oscillations of systems with singular character of the perturbation dependence on the modulation coefficient. We consider periodic boundary value problems for the modified Mathieu equation and the Kochin equation modeling crankshaft torsional vibrations and show that there are significant differences between weakly and essentially perturbed periodicmotions both for the lowest and arbitrary oscillation modes. We also describe the unusual properties of the boundaries in the domain of the system determining parameters.  相似文献   

7.
This paper applies a Hamiltonian method to study analytically the stress dis- tributions of orthotropic two-dimensional elasticity in(x,z)plane for arbitrary boundary conditions without beam assumptions.It is a method of separable variables for partial differential equations using displacements and their conjugate stresses as unknowns.Since coordinates(x,z)can not be easily separated,an alternative symplectic expansion is used. Similar to the Hamiltonian formulation in classical dynamics,we treat the x coordinate as time variable so that z becomes the only independent coordinate in the Hamiltonian ma- trix differential operator.The exponential of the Hamiltonian matrix is symplectic.There are homogenous solutions with constants to be determined by the boundary conditions and particular integrals satisfying the loading conditions.The homogenous solutions consist of the eigen-solutions of the derogatory zero eigenvalues(zero eigen-solutions) and that of the well-behaved nonzero eigenvalues(nonzero eigen-solutions).The Jordan chains at zero eigenvalues give the classical Saint-Venant solutions associated with aver- aged global behaviors such as rigid-body translation,rigid-body rotation or bending.On the other hand,the nonzero eigen-solutions describe the exponentially decaying localized solutions usually ignored by Saint-Venant's principle.Completed numerical examples are newly given to compare with established results.  相似文献   

8.
The paper deals with issues related to the construction of solutions, 2 π-periodic in the angular variable, of the Mathieu differential equation for the circular elliptic cylinder harmonics, the associated characteristic values, and the azimuthal numbers needed to form the elementary elliptic cylinder wave functions. A superposition of the latter is one possible form for representing the analytic solution of the thermoelastic wave propagation problem in long waveguides with elliptic cross-section contour. The classical Sturm-Liouville problem for the Mathieu equation is reduced to a spectral problem for a linear self-adjoint operator in the Hilbert space of infinite square summable two-sided sequences. An approach is proposed that permits one to derive rather simple algorithms for computing the characteristic values of the angular Mathieu equation with real parameters and the corresponding eigenfunctions. Priority is given to the application of the most symmetric forms and equations that have not yet been used in the theory of the Mathieu equation. These algorithms amount to constructing a matrix diagonalizing an infinite symmetric pentadiagonal matrix. The problem of generalizing the notion of azimuthal number of a wave propagating in a cylindrical waveguide to the case of elliptic geometry is considered. Two-sided mutually refining estimates are constructed for the spectral values of the Mathieu differential operator with periodic and half-periodic (antiperiodic) boundary conditions.  相似文献   

9.
电磁共振腔辛有限元法   总被引:3,自引:4,他引:3  
将电磁场的基本方程导向了对偶方程形式。给出了推导电磁场有限元所需相应的对偶变量变分原理。为了有限元列式的保辛,交分原理被积函数可导向对于对偶变量为对称的形式。交分原理的边界积分项对于相邻单元互相抵消。对偶变量有限元推导可避免所谓的C1连续性问题。采用对偶变量离散分析了共振腔本征值问题,离散后再消去一类变量可导出普通的广义本征值问题而求解。算例表明了对偶变量有限元分析的有效性。  相似文献   

10.
A technique for dimensional reduction of nonlinear delay differential equations (DDEs) with time-periodic coefficients is presented. The DDEs considered here have a canonical form with at most cubic nonlinearities and periodic coefficients. The nonlinear terms are multiplied by a perturbation parameter. Perturbation expansion converts the nonlinear response problem into solutions of a series of nonhomogeneous linear ordinary differential equations (ODEs) with time-periodic coefficients. One set of linear nonhomogeneous ODEs is solved for each power of the perturbation parameter. Each ODE is solved by a Chebyshev spectral collocation method. Thus we compute a finite approximation to the nonlinear infinite-dimensional map for the DDE. The linear part of the map is the monodromy operator whose eigenvalues characterize stability. Dimensional reduction on the map is then carried out. In the case of critical eigenvalues, this corresponds to center manifold reduction, while for the noncritical case resonance conditions are derived. The accuracy of the nonlinear Chebyshev collocation map is demonstrated by finding the solution of a nonlinear delayed Mathieu equation and then a milling model via the method of steps. Center manifold reduction is illustrated via a single inverted pendulum including both a periodic retarded follower force and a nonlinear restoring force. In this example, the amplitude of the limit cycle associated with a flip bifurcation is found analytically and compared to that obtained from direct numerical simulation. The method of this paper is shown by example to be applicable to systems with strong parametric excitations.  相似文献   

11.
In this paper, we obtain the analytic solution of free vibration frequency and mode shapes of rectangle, circle and elliptic membranes. The approximate solution of membrane with arbitrary boundary "is also obtained. All of these membranes are acted on by unequal tension in two directions.For the rectangle membrane, in this paper we transform its vibration equation into one of usual membranes by trnasforming the coordinate, thus it is easy to get the solution. For the circle membrane, first we transform the coordinate in the same way we deal with the rectangle membrane. Next we transform the vibration equation into the Mathieu equation, then we get a formula of frequency of that membrane with some Mathieu function’s property. In the solution the elliptic membrane is similar to that of the circle membrane.Finally, some examples are given.  相似文献   

12.
The Chebyshev tau method is examined; a numerical technique which in recent years has been successfully applied to many hydrodynamic stability problems. The orthogonality of Chebyshev functions is used to rewrite the differential equations as a generalized eigenvalue problem. Although a very efficient technique, the occurrence of spurious eigenvalues, which are not always easy to identify, may lead one to believe that a system is unstable when it is not. Thus, the elimination of spurious eigenvalues is of great importance. Boundary conditions are included as rows in the matrices of the generalized eigenvalue problem and these have been observed to be one cause of spurious eigenvalues. Removing boundary condition rows can be difficult. This problem is addressed here, in application to the Bénard convection problem, and to the Orr-Sommerfeld equation which describes parallel flow. The procedure given here can be applied to a wide range of hydrodynamic stability problems.Received: 4 July 2002, Accepted: 13 September 2002, Published online: 27 June 2003  相似文献   

13.
Numerical solutions are presented for stresses around an elliptical hole in a long, thin, circular cylindrical shell subjected to axial tension for both the symmetric orientations of the hole with respect to the shell. The method of analysis involves obtaining a series solution to the governing shell equations in terms of Mathieu functions by the method of separation of variables and satisfying the boundary conditions numerically term by term in a Fourier series formulation. Results are presented in the form of charts from which stress concentration factors can be directly read over a wide range of the two parameters, namely, axis ratio of the ellipse and a curvature parameter defining the hole size with respect to dimensions of the shell.An interesting feature of the investigation is the analysis of limiting cases of circumferential and axial cracks for axial tension and internal pressure loadings respectively. The method developed involves determining the solution completely in elliptic coordinates and then determining the singular stresses by carrying out a transformation to polar coordinates with crack tip as the origin through a Taylor series expansion. Membrane and bending stress intensity factors are computed and plotted over a sufficiently wide range of the curvature parameter extending from small to large sized cracks. As an outcome of the analysis, a “hybrid” technique has been developed by which singularity conditions at the crack tip can be handled effectively in dealing with boundary conditions in crack problems.  相似文献   

14.
哈密顿体系与弹性楔体问题   总被引:2,自引:0,他引:2  
将哈密体系引入到级坐标下的弹性力学楔体问题,利用该体系辛空间的性质,将问题化为本征值和本征向量求解上,得到了完备的解空间,从而改变了弹性力学传统的拉格朗日体系以应力函数为特征的半逆法的讨论去解决该类问题的思路,给出了一条求解该类问题的直接法。  相似文献   

15.
We show how the compound matrix method can be extended to give eigenfunctions as well as generalised eigenvalues to bifurcation problems in non-linear elasticity. When the incremental problem is formulated in terms of displacements only there are significant difficulties that arise from the non-trivial boundary conditions. In order to avoid these problems we adopt a Stroh formulation of the incremental problem. This then produces trivial boundary conditions for the compound matrix eigenvalue problem and more importantly known initial conditions for the compound matrix eigenfunction problem. This results in a straightforward and robust calculation for the eigenfunctions.  相似文献   

16.
The paper presents a modification of the classical boundary integral equation method (BIEM) for two-dimensional potential boundary values problems. The proposed modification consists in describing the boundary geometry by means of Bézier curves. As a result of this analytical modification of the BIEM, a new parametric integral equation system (PIES) was obtained. The kernels of these equations include the geometry of the boundary. This new PIES is no longer defined on the boundary, as in the case of the BIEM, but on the straight line for any given domain. The solution of the new PIES does not require a boundary discretization since it can be reduced merely to an approximation of boundary functions. To solve this PIES a pseudospectral method has been proposed and the results obtained were compared with exact solutions.  相似文献   

17.
A scheme is developed for analysing the interaction between a foundation and a nonlinear rock and soil medium, in which the foundation is considered as a linear elastic body and a typical boundary integral equation method (BIEM) is employed. On the basis of taking the nonlinear properties of the medium into account, a perturbation BIEM is developed. The fundamental equations for the nonlinear coupling analysis are formulated, and typical problems are solved and discussed by the present method.  相似文献   

18.
We describe an analytic method for the computation of equilibrium shapes for two-dimensional vesicles characterized by a Helfrich elastic energy. We derive boundary value problems and solve them analytically in terms of elliptic functions and elliptic integrals. We derive solutions by prescribing length and area, or displacements and angle boundary conditions. The solutions are compared to solutions obtained by a boundary integral equation-based numerical scheme. Our method enables the identification of different configurations of deformable vesicles and accurate calculation of their shape, bending moments, tension, and the pressure jump across the vesicle membrane. Furthermore, we perform numerical experiments that indicate that all these configurations are stable minima.  相似文献   

19.
There are many challenges in the numerical simulation of liquid sloshing in horizontal cylinders and spherical containers using the finite element method of arbitrary Lagrangian–Eulerian (ALE) formulation: tracking the motion of the free surface with the contact points, defining the mesh velocity on the curved wall boundary and updating the computational mesh. In order to keep the contact points slipping along the curved side wall, the shape vector in each time advancement is defined to modify the kinematical boundary conditions on the free surface. A special function is introduced to automatically smooth the nodal velocities on the curved wall boundary based on the liquid nodal velocities. The elliptic partial differential equation with Dirichlet boundary conditions can directly rezone the inner nodal velocities in more than a single freedom. The incremental fractional step method is introduced to solve the finite element liquid equations. The numerical results that stemmed from the algorithm show good agreement with experimental phenomena, which demonstrates that the ALE method provides an efficient computing scheme in moving curved wall boundaries. This method can be extended to 3D cases by improving the technique to compute the shape vector. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
A novel numerical method for eliminating the singular integral and boundary effect is processed. In the proposed method, the virtual boundaries corresponding to the numbers of the true boundary arguments are chosen to be as simple as possible. An indirect radial basis function network (IRBFN) constructed by functions resulting from the indeterminate integral is used to construct the approaching virtual source functions distributed along the virtual boundaries. By using the linear superposition method, the governing equations presented in the boundaries integral equations (BIE) can be established while the fundamental solutions to the problems are introduced. The singular value decomposition (SVD) method is used to solve the governing equations since an optimal solution in the least squares sense to the system equations is available. In addition, no elements are required, and the boundary conditions can be imposed easily because of the Kronecker delta function properties of the approaching functions. Three classical 2D elasticity problems have been examined to verify the performance of the method proposed. The results show that this method has faster convergence and higher accuracy than the conventional boundary type numerical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号