首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We present a high-order cell-centered Lagrangian scheme for solving the two-dimensional gas dynamics equations on unstructured meshes. A node-based discretization of the numerical fluxes for the physical conservation laws allows to derive a scheme that is compatible with the geometric conservation law (GCL). Fluxes are computed using a nodal solver which can be viewed as a two-dimensional extension of an approximate Riemann solver. The first-order scheme is conservative for momentum and total energy, and satisfies a local entropy inequality in its semi-discrete form. The two-dimensional high-order extension is constructed employing the generalized Riemann problem (GRP) in the acoustic approximation. Many numerical tests are presented in order to assess this new scheme. The results obtained for various representative configurations of one and two-dimensional compressible fluid flows show the robustness and the accuracy of our new scheme.  相似文献   

2.
It has been claimed that the particular numerical flux used in Runge–Kutta Discontinuous Galerkin (RKDG) methods does not have a significant effect on the results of high-order simulations. We investigate this claim for the case of compressible ideal magnetohydrodynamics (MHD). We also address the role of limiting in RKDG methods.For smooth nonlinear solutions, we find that the use of a more accurate Riemann solver in third-order simulations results in lower errors and more rapid convergence. However, in the corresponding fourth-order simulations we find that varying the Riemann solver has a negligible effect on the solutions.In the vicinity of discontinuities, we find that high-order RKDG methods behave in a similar manner to the second-order method due to the use of a piecewise linear limiter. Thus, for solutions dominated by discontinuities, the choice of Riemann solver in a high-order method has similar significance to that in a second-order method. Our analysis of second-order methods indicates that the choice of Riemann solver is highly significant, with the more accurate Riemann solvers having the lowest computational effort required to obtain a given accuracy. This allows the error in fourth-order simulations of a discontinuous solution to be mitigated through the use of a more accurate Riemann solver.We demonstrate the minmod limiter is unsuitable for use in a high-order RKDG method. It tends to restrict the polynomial order of the trial space, and hence the order of accuracy of the method, even when this is not needed to maintain the TVD property of the scheme.  相似文献   

3.
The goal of this paper is to present high-order cell-centered schemes for solving the equations of Lagrangian gas dynamics written in cylindrical geometry. A node-based discretization of the numerical fluxes is obtained through the computation of the time rate of change of the cell volume. It allows to derive finite volume numerical schemes that are compatible with the geometric conservation law (GCL). Two discretizations of the momentum equations are proposed depending on the form of the discrete gradient operator. The first one corresponds to the control volume scheme while the second one corresponds to the so-called area-weighted scheme. Both formulations share the same discretization for the total energy equation. In both schemes, fluxes are computed using the same nodal solver which can be viewed as a two-dimensional extension of an approximate Riemann solver. The control volume scheme is conservative for momentum, total energy and satisfies a local entropy inequality in its first-order semi-discrete form. However, it does not preserve spherical symmetry. On the other hand, the area-weighted scheme is conservative for total energy and preserves spherical symmetry for one-dimensional spherical flow on equi-angular polar grid. The two-dimensional high-order extensions of these two schemes are constructed employing the generalized Riemann problem (GRP) in the acoustic approximation. Many numerical tests are presented in order to assess these new schemes. The results obtained for various representative configurations of one and two-dimensional compressible fluid flows show the robustness and the accuracy of our new schemes.  相似文献   

4.
描述一种新的求解Euler方程的拉格朗日格式,该格式用Runge-Kutta Discontinuous Galerkin(RKDG)方法在拉格朗日坐标系求解Euler方程,剖分网格随流体运动.新格式不仅保证流体的质量、动量和能量守恒,而且能够在时间和空间上同时达到二阶精度.数值算例表明在一维情况,随着拉氏网格的移动和改变,格式在时间和空间上仍保持二阶精度,并且没有数值震荡.  相似文献   

5.
In this paper, a Petrov-Galerkin scheme named the Runge-Kutta control volume (RKCV) discontinuous finite element method is constructed to solve the one-dimensional compressible Euler equations in the Lagrangian coordinate. Its advantages include preservation of the local conservation and a high resolution. Compared with the Runge-Kutta discontinuous Galerkin (RKDG) method, the RKCV method is easier to implement. Moreover, the advantages of the RKCV and the Lagrangian methods are combined in the new method. Several numerical examples are given to illustrate the accuracy and the reliability of the algorithm.  相似文献   

6.
In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.  相似文献   

7.
构造Lagrange坐标系下二维可压缩气动方程组的RKDG(Runge-Kutta Discontinuous Galerkin)有限元方法.将流体力学方程组和几何守恒律统-求解,所有计算都在固定的网格上进行,计算过程中不需要网格节点的速度信息.对几个数值算例进行数值模拟,得到较好的数值模拟结果.  相似文献   

8.
赵国忠  蔚喜军  张荣培 《中国物理 B》2013,22(2):20202-020202
In this paper, Runge-Kutta Discontinuous Galerkin (RKDG) finite element method is presented to solve the one-dimensional inviscid compressible gas dynamic equations in Lagrangian coordinate. The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method. A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method. For multi-medium fluid simulation, the two cells adjacent to the interface are treated differently from other cells. At first, a linear Riemann solver is applied to calculate the numerical flux at the interface. Numerical examples show that there is some oscillation in the vicinity of the interface. Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical flux at the interface, which suppress the oscillation successfully. Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.  相似文献   

9.
This work presents a multi-dimensional cell-centered unstructured finite volume scheme for the solution of multimaterial compressible fluid flows written in the Lagrangian formalism. This formulation is considered in the Arbitrary-Lagrangian–Eulerian (ALE) framework with the constraint that the mesh velocity and the fluid velocity coincide. The link between the vertex velocity and the fluid motion is obtained by a formulation of the momentum conservation on a class of multi-scale encased volumes around mesh vertices. The vertex velocity is derived with a nodal Riemann solver constructed in such a way that the mesh motion and the face fluxes are compatible. Finally, the resulting scheme conserves both momentum and total energy and, it satisfies a semi-discrete entropy inequality. The numerical results obtained for some classical 2D and 3D hydrodynamic test cases show the robustness and the accuracy of the proposed algorithm.  相似文献   

10.
The high-order accurate Runge–Kutta discontinuous Galerkin (RKDG) method is applied to the simulation of compressible multi-medium flow, generalizing the interface treating method given in Chertock et al. (2008) [9]. In mixed cells, where the interface is located, Riemann problems are solved to define the states on both sides of the interface. The input states to the Riemann problem are obtained by extrapolation to the cell boundary from solution polynomials in the neighbors of the mixed cell. The level set equation is solved by using a high-order accurate RKDG method for Hamilton–Jacobi equations, resulting in a unified DG solver for the coupled problem. The method is conservative if we include the states in the mixed cells, which are however not used in the updating of the numerical solution in other cells. The states in the mixed cells are plotted to better evaluate the conservation errors, manifested by overshoots/undershoots when compared with states in neighboring cells. These overshoots/undershoots in mixed cells are problem dependent and change with time. Numerical examples show that the results of our scheme compare well with other methods for one and two-dimensional problems. In particular, the algorithm can capture well complex flow features of the one-dimensional shock entropy wave interaction problem and two-dimensional shock–bubble interaction problem.  相似文献   

11.
构造矩形网格下求解Lagrangian坐标系下气动方程组的单元中心型格式. 空间离散采用控制体积间断Petrov-Galerkin方法,时间离散采用二阶TVD Runge-Kutta方法. 利用限制器来抑制非物理震荡并保证RKCV算法的稳定性. 构造的算法可以保证物理量的局部守恒. 与Runge-Kutta间断Galerkin(RKDG)方法相比较,RKCV方法的计算公式少一项积分项使得计算较简单. 给出一些数值算例验证了算法的可靠性及效率.  相似文献   

12.
This paper presents a new atmospheric dynamical core which uses a high-order upwind finite-volume scheme of Godunov type for discretizing the non-hydrostatic equations of motion on the sphere under the shallow-atmosphere approximation. The model is formulated on the cubed-sphere in order to avoid polar singularities. An operator-split Runge–Kutta–Rosenbrock scheme is used to couple the horizontally explicit and vertically implicit discretizations so as to maintain accuracy in time and space and enforce a global CFL condition which is only restricted by the horizontal grid spacing and wave speed. The Rosenbrock approach is linearly implicit and so requires only one matrix solve per column per time step. Using a modified version of the low-speed AUSM+-up Riemann solver allows us to construct the vertical Jacobian matrix analytically, and so significantly improve the model efficiency. This model is tested against a series of typical atmospheric flow problems to verify accuracy and consistency. The test results reveal that this approach is stable, accurate and effective at maintaining sharp gradients in the flow.  相似文献   

13.
基于欧拉框架下ADER格式,构造一维守恒只有一个时间步的、高精度中心型拉格朗日ADER(LADER)格式.构造r阶LADER格式包括:从欧拉方程出发推导拉格朗日框架下积分形式的方程、采用WENO方法高精度重构节点处守恒量和从1阶到r-1阶的空间导数、求拉氏框架下这些变量的Godunov值,并计算1阶到r-1阶的时间全导数,最后高精度离散积分形式的流通量函数.对光滑流场的模拟表明,LADER格式达到设计的精度;对含强间断的流场模拟表明,数值解在间断附近基本无振荡.  相似文献   

14.
刘志刚  邹晓兵  王新新 《强激光与粒子束》2022,34(7):075002-1-075002-11
基于拉格朗日描述,建立了水中金属丝电爆炸的单温磁流体动力学模型,并给出一种高阶混合有限元离散求解方法。拉氏可压缩流体方程组中,速度定义在H1连续有限元空间,内能定义在L2间断有限元空间实现物质界面的精确捕捉,存在激波的区域引入张量人工粘性抑制数值振荡。磁扩散方程仅考虑周向磁通量密度,简化为标量方程,使用H1连续有限元方法离散求解。焦耳热和洛伦兹力作为源项引入实现磁流体方程的耦合。数值算例表明:磁扩散求解器能够求解存在不同电导率的多介质磁扩散问题;拉氏流体求解器能够精确追踪物质界面,具有较好的激波分辨能力;耦合RLC电路的磁流体求解器能够复现水中金属丝电爆炸加热相变、冲击波的产生与传播、放电模式转变等物理过程。  相似文献   

15.
This paper presents a third-order and fourth-order finite-volume method for solving the shallow-water equations on a non-orthogonal equiangular cubed-sphere grid. Such a grid is built upon an inflated cube placed inside a sphere and provides an almost uniform grid point distribution. The numerical schemes are based on a high-order variant of the Monotone Upstream-centered Schemes for Conservation Laws (MUSCL) pioneered by van Leer. In each cell the reconstructed left and right states are either obtained via a dimension-split piecewise-parabolic method or a piecewise-cubic reconstruction. The reconstructed states then serve as input to an approximate Riemann solver that determines the numerical fluxes at two Gaussian quadrature points along the cell boundary. The use of multiple quadrature points renders the resulting flux high-order. Three types of approximate Riemann solvers are compared, including the widely used solver of Rusanov, the solver of Roe and the new AUSM+-up solver of Liou that has been designed for low-Mach number flows. Spatial discretizations are paired with either a third-order or fourth-order total-variation-diminishing Runge–Kutta timestepping scheme to match the order of the spatial discretization. The numerical schemes are evaluated with several standard shallow-water test cases that emphasize accuracy and conservation properties. These tests show that the AUSM+-up flux provides the best overall accuracy, followed closely by the Roe solver. The Rusanov flux, with its simplicity, provides significantly larger errors by comparison. A brief discussion on extending the method to arbitrary order-of-accuracy is included.  相似文献   

16.
Discontinuities usually appear in solutions of nonlinear conservation laws even though the initial condition is smooth, which leads to great difficulty in computing these solutions numerically. The Runge-Kutta discontinuous Galerkin (RKDG) methods are efficient methods for solving nonlinear conservation laws, which are high-order accurate and highly parallelizable, and can be easily used to handle complicated geometries and boundary conditions. An important component of RKDG methods for solving nonlinear conservation laws with strong discontinuities in the solution is a nonlinear limiter, which is applied to detect discontinuities and control spurious oscillations near such discontinuities. Many such limiters have been used in the literature on RKDG methods. A limiter contains two parts, first to identify the "troubled cells", namely, those cells which might need the limiting procedure, then to replace the solution polynomials in those troubled cells by reconstructed polynomials which maintain the original cell averages (conservation). [SIAM J. Sci. Comput., 26 (2005), pp. 995-1013] focused on discussing the first part of limiters. In this paper, focused on the second part, we will systematically investigate and compare a few different reconstruction strategies with an objective of obtaining the most efficient and reliable reconstruction strategy. This work can help with the choosing of right limiters so one can resolve sharper discontinuities, get better numerical solutions and save the computational cost.  相似文献   

17.
The Vlasov–Poisson equations describe the evolution of a collisionless plasma, represented through a probability density function (PDF) that self-interacts via an electrostatic force. One of the main difficulties in numerically solving this system is the severe time-step restriction that arises from parts of the PDF associated with moderate-to-large velocities. The dominant approach in the plasma physics community for removing these time-step restrictions is the so-called particle-in-cell (PIC) method, which discretizes the distribution function into a set of macro-particles, while the electric field is represented on a mesh. Several alternatives to this approach exist, including fully Lagrangian, fully Eulerian, and so-called semi-Lagrangian methods. The focus of this work is the semi-Lagrangian approach, which begins with a grid-based Eulerian representation of both the PDF and the electric field, then evolves the PDF via Lagrangian dynamics, and finally projects this evolved field back onto the original Eulerian mesh. In particular, we develop in this work a method that discretizes the 1 + 1 Vlasov–Poisson system via a high-order discontinuous Galerkin (DG) method in phase space, and an operator split, semi-Lagrangian method in time. Second-order accuracy in time is relatively easy to achieve via Strang operator splitting. With additional work, using higher-order splitting and a higher-order method of characteristics, we also demonstrate how to push this scheme to fourth-order accuracy in time. We show how to resolve all of the Lagrangian dynamics in such a way that mass is exactly conserved, positivity is maintained, and high-order accuracy is achieved. The Poisson equation is solved to high-order via the smallest stencil local discontinuous Galerkin (LDG) approach. We test the proposed scheme on several standard test cases.  相似文献   

18.
19.
龙格库塔间断有限元方法在计算爆轰问题中的应用   总被引:1,自引:1,他引:0  
张磊  袁礼 《计算物理》2010,27(4):509-517
构造求解带源项守恒律方程组的龙格库塔间断有限元(RKDG)方法,并分别结合源项的Strang分裂法和无分裂法数值求解模型守恒律方程和反应欧拉方程.为了和有限体积型WENO方法进行比较,设计计算源项的WENO重构格式.对一维带源项守恒律的计算表明,对于非刚性问题,RKDG方法比有限体积型WENO方法的误差更小;对于刚性问题,RKDG方法对于间断面位置的捕捉更为精确.对于一二维爆轰波问题的计算结果表明,RKDG方法对爆轰波结构的分辨和爆轰波位置的捕捉能力更强.  相似文献   

20.
This article presents a numerical model that enables to solve on unstructured triangular meshes and with a high-order of accuracy, a multi-dimensional Riemann problem that appears when solving hyperbolic problems.For this purpose, we use a MUSCL-like procedure in a “cell-vertex” finite-volume framework. In the first part of this procedure, we devise a four-state bi-dimensional HLL solver (HLL-2D). This solver is based upon the Riemann problem generated at the centre of gravity of a triangular cell, from surrounding cell-averages. A new three-wave model makes it possible to solve this problem, approximately. A first-order version of the bi-dimensional Riemann solver is then generated for discretizing the full compressible Euler equations.In the second part of the MUSCL procedure, we develop a polynomial reconstruction that uses all the surrounding numerical data of a given point, to give at best third-order accuracy. The resulting over determined system is solved by using a least-square methodology. To enforce monotonicity conditions into the polynomial interpolation, we develop a simplified central WENO (CWENO) procedure.Numerical tests and comparisons with competing numerical methods enable to identify the salient features of the whole model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号