首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A series of poly(dimethylsiloxane‐urethane) elastomers based on hexamethylenediisocyanate, toluenediisocyanate, or 4,4′‐methylenediphenyldiisocyanate hard segment and polydimethylsiloxane (PDMS) soft segment were synthesized. In this study, a new type of soft‐segmented PDMS crosslinker was synthesized by hydrosilylation reaction of 2‐allyloxyethanol with polyhydromethylsiloxane, using Karstedt's catalyst. The synthesized soft‐segmented crosslinker was characterized by FT‐IR, 1H, and 13C NMR spectroscopic techniques. The mechanical and thermal properties of elastomers were characterized using tensile testing, thermogravimetric analysis, differential scanning calorimetry (DSC), and dynamical mechanical analysis measurements. The molecular structure of poly(dimethylsiloxane‐urethane) membranes was characterized by ATR‐FTIR spectroscopic techniques. Infrared spectra indicated the formation of urethane/urea aggregates and hydrogen bonding between the hard and soft domains. Better mechanical and thermal properties of the elastomers were observed. The restriction of chain mobility has been shown by the formation of hydrogen bonding in the soft and hard segment domains, resulting in the increase in the glass‐transition temperature of soft segments. DSC analysis indicates the phase separation of the hard and soft domains. The storage modulus (E′) of the elastomers was increasing with increase in the number of urethane connections between the hard and soft segments. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2980–2989, 2006  相似文献   

2.
Multiblock poly(ester-block-amide)s (PEA) elastomers comprising hard blocks of oligoamide and oligoester soft segments were prepared and their structure-property relations were analysed. The polycondensation reaction of oligoesters (prepared from 1,4-butanediol and dimerized fatty acid) with oligolaurolactam (PA12) gave copolymer series with variable blocks content (the soft segments content was varied from 24 to 60 wt.%). PEAs are the phase system composed of crystallised sequences of oligoamide (hard segment phase) as well as oligoesters (soft segment phase). Mixing between the hard and soft phases was studied by thermal and mechanical measurements (DSC, DMTA). These results have indicated on a multiphase structure of investigated materials. The relationship between the observed thermal and tensile properties and the soft/hard segments content indicated on an increase of the phase separation with soft segments content.  相似文献   

3.
用二步法合成了不同软段 (PPO ,PEG ,PEPA)聚氨酯 酰亚胺 (PUI)嵌段共聚物 ,FTIR光谱表征了所有合成PUI分子主链均含有酰亚胺链段 ,并研究了PUI嵌段共聚物的热性能受软段类型及长度的影响 .DSC研究表明聚酯型PUI的软硬段之间的相容性比聚醚型PUI好 ,随相同软段分子量的增加 ,PUI体系的软硬段兼容性变差 ,并显示了相分离的特征 ;热失重 (TGA)研究得出不同软段的PUI样品的热稳定性大小顺序为 :PEPA PUI >PEG PUI>PPO PUI ;动态力学 (DMTA)研究给出了所合成的PUI样品在 5 0~ 2 0 0℃范围内均出现了较长的模量平台显示出有较好的耐热性 ,且随硬段含量的升高其储能模量不断增强  相似文献   

4.
Novel polyurethanes consisting of polyisobutylene (PIB)/poly(tetramethylene oxide) (PTMO) or PIB/poly(hexamethylene carbonate) (PC) soft co‐segments in combination with 4,4′‐methylene‐bis(cyclohexyl isocyanate)/1,6‐hexanediol, 1,4‐butanediol, or 1,6‐hexamethylene diamine hard segments exhibit excellent mechanical properties (upto 31 MPa tensile strength with 700% elongation) together with unprecedented oxidative/hydrolytic stability. A structural model of the morphology of these polyurethanes was developed that reflects this combination of properties. The key new elements of our model are H bridges between the PTMO and PC type soft and urethane hard segments, which compatibilize the soft and hard domains, and the presence of large quantities of chemically resistant PIB soft segments that protect the other oxidatively/hydrolytically vulnerable constituents. A variety of FTIR, DSC, SAXS, AFM, and DMTA experiments strongly support the proposed morphological model. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6180–6190, 2009  相似文献   

5.
This paper presents the properties of epoxy nanocomposites, prepared using a synthesized hybrid Polypyrrole-Graphene Oxide (PPy-GO) filler, via in-situ chemical polymerization, at various filler loadings (i.e., 0.5–2 w. t %). The microstructures and properties of the PPy-GO hybrids and epoxy nanocomposites were studied via Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), mechanical (Tensile Properties), electrical, Dynamic mechanical thermal analysis (DMTA) and thermogravimetric analyses (TGA). Morphological study demonstrated that varying the nanofiller nature (PPy-GOs, PPy or GO) lead to different states of dispersion. Mechanical, electrical and thermal analysis demonstrated that the hybrid concentration and its architecture (PPy:GO ratio) are interesting factors significantly affected the properties of the epoxy based nanocomposites. On the other hand, the mechanical performance of the cured nanocomposites outperformed the PPy-GO, with enhancements of 78% and 51% of Young's modulus and strength, respectively. Here it has been established that the embedding of PPy-GO hybrids into pristine epoxy endows optimum dispersion of PPy and GO as well as better interfacial adhesion between the fillers and matrix, which results in a significant improvement in load transfer effectiveness. Electrical conductivity measurements showed that conductivity of epoxy filled nanocomposites increased up 10−4 S/cm for Epoxy/PPy-GO nanocomposites. DMTA test indicated that incorporation of PPy-GO resulted in a significantly increase in Tg of the resultant nanocomposites, which is attributed to the highly exfoliation structure and the stronger interfacial interaction. The PPy-GO particles enhanced electrical, thermal and mechanical properties of nanocomposites, confirming the synergistic effect of PPy-GO as multifunctional filler.  相似文献   

6.
Two series of multiblock copolymers, poly(ester-block-amide)s (PEA) and poly(amide-block-amide)s (PAA), with the same type of oligoamide soft block were obtained. Oligoamide soft block was prepared from dimerized fatty acid and 1,6-hexamethylenediamine. Oligo(butylene terephthalate) (PBT) was used as oligoester hard block in the first series and oligolaurolactam (PA12) was oligoamide hard block in the second one. The thermal and mechanical properties of these copolymers have been investigated as functions of temperature and the hard/soft block ratio. DSC and DMTA revealed that the copolymers behaved as thermoplastic elastomers.  相似文献   

7.
The optical properties of mechanochromic materials change under mechanical stress. Segmented polyurethanes are elastomers composed of amorphous, saturated chain soft segments, and rigid pi‐conjugated hard domains. Within aggregates of hard domains pi–pi interactions may form and result in perturbation of the optoelectronic properties of the system. Disruption and restoration of these electronic interactions within the material may lead to observable mechanochromic response. A series of oligothiophene diols and diamines, as well as a naphthalene diimide diol, have been synthesized for incorporation into the hard domains of segmented polyurethanes and polyureas using long poly(tetramethylene oxide) chains as soft segments. The resulting polymers were evaluated to determine their extent of polymerization and their thermal stability. The optical properties of the materials were studied in solution and as thin films. Where possible the electrochemical properties of the polymers were also explored. The length of the soft segment chains in the segmented polyurethanes hindered electronic coupling of hard domains. Future work involving smaller, more solubilizing soft segments may allow for easier material characterization and mechanochromic response. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

8.
利用 1 ,5_萘二异氰酸酯 (NDI)和 1 ,4_丁二醇 (BDO)为均匀硬质分子单体 ,与不同软质分子单体 (聚醚、聚酯、聚硅氧烷 )缩合制备多嵌段聚氨酯弹性体 ,详细研究了硬嵌段相 (NDI)弹性体的结构与性能间的关系 ,发现随着硬嵌段相长度的增加 ,或者氨基甲酸酯中胺基与聚醚、聚酯、聚硅氧烷中软段氧原子间氢键的减弱 ,都导致微相分离程度的增加 ,造成聚合物熔点和熔化热的升高。硬嵌段相熔化的多峰行为是由于形成了NDI/BDO半微晶区 ,在退火时转变为更加有序的结晶微区 ,当温度高于 1 80℃时 ,由于氢键的断裂 ,NDI/BDO硬嵌段发生分解反应 ,该过程源于不很有序的硬嵌段半结晶微区。当温度高于 2 5 0℃时 ,发生快速的分解。在动态力学行为方面 ,NDI基聚醚弹性体比其它硅氧烷基的弹性体展示了更高的硬嵌段区的稳定性 ,同时 ,在使用温度范围内 ,也显示出最高的储能模量值 ,表明刚性对温度的依赖性 ,以及NDI/BDO硬嵌段中活性填料的显著影响  相似文献   

9.
Three series of novel poly(amide-ester) (PAE) elastomers were prepared by direct poly-condensation from terephthalic acid (TPA), polyols (Mn = 1000 or 2000), and various diamines. The structures and thermal properties of the synthesized PAEs were examined by FTIR spectroscopy, wide angle X-ray diffraction (WAXD), differential scanning calo-rimetry (DSC), thermal optical polarized microscopy, thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). The effects of kinds and amount of diamines and the molecular weight of polyols on the thermal properties of PAEs were studied. By introducing long flexible spacers (PE-1000 or PE-2000) into the polymer main chain, all polymers showed two-phase morphology under the thermal optical microscopic observation. It was interesting that most of the synthesized polymers exhibited only one melting transition corresponding to the soft segments. The melting transition of hard segments could not be detected due to decomposition of the soft segments. However, a thermotropic liquid crystalline PAE (TLCPAE) prepared from methylhydroquinone and 2-chloro-5-methyl-phenylenediamine with PE-1000 could be obtained by lowering the melting transition temperature of the hard segment. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
相同软硬段质量配比聚醚酯弹性体PEG/PBT的结构与表征   总被引:9,自引:0,他引:9  
以熔融缩聚法合成了一系列聚乙二醇(PEG)/聚对苯二甲酸丁二醇酯(PBT)聚醚酯热塑性弹性体,用NMR,FTIR,DSC及力学性能测试等方法表征了材料的结构及性能.讨论了在相同软硬段质量配比下,不同软硬段长度对材料性能的影响.结果表明,随着软段PEG长度增加,硬段PBT长度相应增长,弹性模量基本保持不变,抗拉强度、屈服应力及特性粘度增加.  相似文献   

11.
Abstract

The object of this study was to assess the effect of the chain length and of the pendant 3-methyl side group in the soft segment of polyurethane (PU) elastomers. In addition, the effect of annealing-quenching on the degree of microstructural segregation between the hard and soft segments was also investigated. The study employed electron spin resonance (ESR), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). Samples for ESR measurements were spin-labeled with the nitroxide probe, 4-hydroxy-2,2′,6,6′-piperidine-1-oxyl (TEMPOL), by reaction of an isocyanate group with the hydroxyl group of TEMPOL. The nitroxide label is therefore located at a chain end. The PU's were based on 4,4′-diphenylmethane diisocyanate (MDI), poly(oxytetramethylene) glycols (PTMO), and hydroxyl-terminated random copolymers of tetrahydrofuran and 3-methyl-tetrahydrofuran (THF/Me-THF). Purified 1,4-butanediol (BD) was used as a chain extender. The elastomers made from higher molecular weight (MW) soft segments have better phase segregation than their lower MW counterparts. The 3-methyl side groups on the PTMO backbone have some effect on the arrangements of the two domains. ESR analysis indicated that the increase in the MW of THF/Me-THF decreased the degree of mixing between the hard and soft segments. In PU elastomers made from high MW soft segments, the presence of crystallinity was observed from the DSC measurements. The crystallinity of the soft segments was disrupted by the existence of the 3-methyl side groups.  相似文献   

12.
Four series of thermotropic polyurethane elastomers (TPUEs) were synthesized in this study. The hard segments were formed by using 4,4′-methylenedicyclohexyl diisocyanate (H12MDI) reacted with various mesogenic units, such as benzene-1,4-di(4-iminophenoxy-n-hexanol), benzene-1,4-di(4-iminophenol), and 3,3′-(4,4′-biphenylene)dipropanol, which also acted as the chain extender. Poly(oxytetramethylene)glycols (PTMEGs), PTMEG-2000 (Mn 2,000) and PTMEG-1000 (Mn 1,000) were used as a soft segment. The structures of all synthesized thermotropic liquid crystalline polyurethanes (TLCPUs) were characterized by FTIR spectroscopy. The effects of mesogenic units on the LC properties and elastic behaviors of LCPUs were studied. It was difficult to show LC behaviors for the PU elastomers derived from the mesogenic units with a lower aspect ratio, such as 3,3′-(4,4′-biphenylene)dipropanol, or the long soft segments, PTMEG-2000. In addition, these PU elastomers show better elastic properties by using a higher aspect ratio mesogenic unit as the chain extender, such as benzene-1,4-di(4-iminophenoxy-n-hexanol and benzene-1,4-di(4-imino-phenol)). The thermal properties were investigated by DSC measurements, thermal optical polarized microscopy, wide angle X-ray diffraction, dynamic mechanical analysis, and thermogravimetric analysis. The mechanical properties were measured by a tensilemeter. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
A series of polyurethane block copolymers based on hydroxybutyl terminated poly(chloropropylmethyl-dimethylsiloxane) and poly(tetramethylene oxide) soft segments of molecular weights 2100 and 2000, respectively, were synthesized. The hard segments consisted of 4,4′-methylenediphenylene diisocyanate (MDI) that was chain extended with either 1,4-butanediol (BD) or N-methyldiethanolamine (MDEA). The materials chain extended with MDEA were ionized using 1,3-propane sultone. The weight fraction of the hard segments was in the range 0.30–0.45. The effect of mixed soft segments, chain extenders, and zwitterionization on the extent of phase separation and physical properties was studied by utilizing differential scanning calorimetry and dynamic mechanical, stress-strain, and Fourier Transform Infrared spectroscopy experiments. All of these short segment block copolymers showed nearly complete phase separation. The zwitterionomer materials exhibited ionic aggregation within the hard domains. Although hard segment crystallinity or ionic aggregation did not affect the morphology, hard domain cohesion was important in determining the tensile and viscoelastic properties of these elastomers.  相似文献   

14.
端羟基芳香酯二醇扩链的聚氨酯-酯的DSC研究陈静,余学海,杨昌正(南京化工学院应化系南京210009)(南京大学化学系南京210093)关键词嵌段聚醚聚氨酯-酯,结晶性,微观相结构,差示扫描量热法,形态结构众所周知,聚氨酯嵌段共聚物是一类结构特殊、用...  相似文献   

15.
端羟基芳香酯二醇扩链的聚氨酯-酯的DSC研究陈静,余学海,杨昌正(南京化工学院应化系南京210009)(南京大学化学系南京210093)关键词嵌段聚醚聚氨酯-酯,结晶性,微观相结构,差示扫描量热法,形态结构众所周知,聚氨酯嵌段共聚物是一类结构特殊、用...  相似文献   

16.
主链型液晶聚硅氧烷聚氨酯的合成及性质   总被引:12,自引:0,他引:12  
合成了主链型联苯类及氧化偶氯苯类液晶聚硅氧烷聚氨酯弹性体,采用红外光谱,示差扫描量热,动态粘弹谱及带热台偏光显微镜等方法对聚合物进行了表征,讨论了它们的结构与性能.研究结果表明,这一系列多嵌段聚氨酯多数是向列型的液晶高分子聚合物,液晶相的形成同嵌段聚氨酯样品的软硬段相互作用有着密切的联系  相似文献   

17.
A series of polyurethane block polymers based on hydroxybutyl-terminated polydimethyl-siloxane soft segments of molecular weight 2000 were synthesized. The hard segments consisted of 4,4′-methylenediphenylene diisocyanate (MDI) which was chain extended with either 1,4-butanediol (BD) or N-methyldiethanolamine (MDEA). The MDEA-extended materials were ionized by using 1,3-propane sultone. The weight fraction of hard segments was in the range 0.13–0.39. The morphology and properties of these polyurethane elastomers were studied by a variety of techniques. All of these short-segment block copolymers showed nearly complete phase separation. The zwitterionomer materials exhibited ionic aggregation within the hard domains. Hard-segment crystallinity or ionic aggregation did not affect the morphology. Hard-domain cohesion was found to be a more important factor than hard-domain volume fraction in determining the tensile and viscoelastic properties of these elastomers.  相似文献   

18.
We introduce briefly surface modification of clay minerals, structure, properties and, characterization techniques of polymer-clay (PCN's) nanocomposites. Organically modified layered-silicates or nanoclays have become an attractive class of hybrid materials due to their prospective use in a great variety of applications from industry to health. For design, synthesis and characterization for potential biomedical nanocomposites, antitumor-active copolymer; poly(DHP-alt-MA) were used to prepare copolymer/clay nanocomposites. The functional copolymers, having a combination of rigid/flexible linkages and an ability of complex-formation with interlayered surface of organo-silicate, and their nanocomposites have been synthesized by interlamellar complex-radical copolymerization of intercalated monomer complexes of maleic anhydride (MA) and 3,4-Dihydro-2H-pyran (DHP) with three alkyl ammonium salts surface modified bentonite and monomer mixtures. Poly(DHP-alt-MA) pristine copolymer and poly(DHP-alt-MA)/organically modified bentonite nanocomposites were characterized by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), HR-Raman, X-ray diffraction (XRD) and TEM methods.  相似文献   

19.
通过溶剂交换法将无机Laponite从水相转移到N,N-二甲基乙酰胺(DMAC)中,在超声波作用下,Laponite与热塑性聚氨酯(TPU)溶液进行共混复合,Laponite插层到PU分子链间而制备Laponite/聚氨酯纳米复合材料.利用TEM,AFM,TGA,DSC,DMA和静态拉伸对其结构、组成、形貌和性能进行表征,研究结果表明,Laponite优先插层到聚氨酯的硬段中,片层和硬段通过氢键相互作用和尺寸匹配性,进而形成一种插层网络结构.由于这种网络结构的存在,使Laponite/聚氨酯复合材料的强度、硬度及韧性得到同步提高.  相似文献   

20.
Organo-modified layered silicates (OMLSs) can largely improve mechanical properties of Thermoplastic polyurethanes (TPUs) as well as affect their microdomain morphology. Nanocomposite TPU containing OMLSs were prepared by melt blending at different concentrations. The addition of OMLS has both induced variation in enthalpy of melting of hard and soft phases, and influenced the glass transition temperature of soft domains, as result of the microdomain phase segregation measured by means of fourier transform infrared spectroscopy (FT-IR). Small angle X-ray scattering (SAXS) analysis has shown that the mean distance between hard domains was mostly unaffected by the filler. However, its distribution broadened with the increasing concentration of the OMLSs, resulting in increased extent of the hard domain interface. The storage modulus of TPU nanocomposites incremented with the silicate content, while the dynamic strain scan tests showed pronounced non linear viscoelastic behavior. The analysis of morphological data obtained by SAXS and FT-IR measurements were correlated to thermal and dynamic mechanical properties of TPU samples suggesting a crucial role of the soft domains interface. The storage modulus and loss tangent of TPU nanocomposites were found to increase with the increasing of the interface area of soft domains with both hard domains and OMLS stacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号