首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel phosphorus-nitrogen containing intumescent flame retardant (P-N IFR) was prepared via the reaction of a caged bicyclic phosphorus (PEPA) compound and 4,4′-diamino diphenyl methane (DDM) in two steps. The product was added to poly(butylene terephthalate) (PBT) to obtain halogen-free flame retarded polyester. UL-94 test, thermogravimetry and in situ infrared spectroscopy were used to characterize the flammability, thermal degradation properties and the char-forming process. It was shown that the phosphorus-nitrogen containing compound could improve both the flame retardancy and thermal stability more effectively than other P-N flame retardants. Furthermore, it was a good char-forming agent incorporated with the co-addition of polyurethane (PU) when the combustion occurred. The formation of P-N structure was incorporated in the char layer.  相似文献   

2.
郭晓东 《广州化学》2011,36(3):64-70
分别介绍了采用金属氢氧化物阻燃剂、蒙脱石型阻燃剂、磷系阻燃剂、氮系阻燃剂、膨胀型阻燃剂、有机硅阻燃剂、碱式硫酸镁晶须(MOS)阻燃剂和辐射交联技术制备的无卤阻燃乙烯―乙酸乙烯共聚物(EVA)复合材料的研究开发现状,并展望了无卤阻燃EVA复合材料的发展趋势。  相似文献   

3.
The TG-FTIR technique was used in the present study to investigate the thermal degradation behaviour of materials containing brominated flame retardants under fire conditions. Time-temperature profiles and oxygen concentrations typical of selected fire scenarios were reproduced in the thermogravimetric analyzer, while the characterization of the gaseous products generated was performed by the simultaneous FTIR analysis. FTIR analysis combined with the use of specific calibration procedures allowed the quantitative estimation of the gaseous products evolved as a function of experimental conditions. The results obtained allowed the straightforward assessment and the comparison of the quantities of hydrogen bromide formed in the oxidation and thermal degradation of pure brominated flame retardants and of flame retarded materials of industrial interest. Hydrogen bromide yields resulted dependent on the experimental conditions used, such as oxygen concentration and heating rate. Although TG-FTIR experiments only provide a representation of the actual heterogeneous combustion products in real fire conditions, the coupled TG-FTIR technique proved to be a straightforward experimental methodology allowing one to obtain reference data on the nature and quantities of the macropollutants generated in a fire. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
We have shown previously that the introduction of nanoclays can reduce the flammability of synthetic fibre-forming polymers like polyamides 6 and 6.6 only if used in conjunction with conventional flame retardants. In this work we report initial studies of the effects of dispersed nanoclays with low concentrations of selected flame retardants introduced into polypropylene on flammability, thermal degradation and X-ray diffraction behaviours. Flame retardants used include ammonium polyphosphate as a conventional char-former and a hindered amine stabiliser known to have flame retarding characteristics in polypropylene.  相似文献   

5.
综述了国内外聚乙烯用阻燃剂及其复配体系的研究进展,对无卤阻燃剂作了较为详细的介绍,最后对聚乙烯用阻燃剂今后的发展趋势作了简单的分析。  相似文献   

6.
Filler nanoparticles pave the way for the development of novel halogen-free flame-retardant polymers. The aim of this study was to investigate the thermal degradability, and in particular, the thermal degradation mechanism of organophosphorus flame-retardant poly(methyl methacrylate) (PMMA) nanocomposites containing nanoclay (NC) and multi-walled carbon nanotubes (CNT). For this purpose, thermogravimetry and direct pyrolysis mass spectrometry analysis were utilized. The onset of degradation was delayed through increased maximum degradation temperature and suppressed mass loss corresponding to initial degradation stage with carbon nanotubes and nanoclays, respectively. Possibility of reactions of melamine and/or melamine derivatives and interactions between carbonyl groups of PMMA and phosphinic acid leading to thermally more stable products was increased owing to the barrier effect of filler nanoparticles. In the presence of NC better flame retarding characteristics was detected as anhydride formation, leading to charring being more effective.  相似文献   

7.
The reaction to fire of polymer nanocomposites (thermoplastic polyurethane and polyamide-6) containing two different nanofillers (organoclay and carbon nanotube) has been investigated. Polymer nanocomposites exhibit significant reduction of peak of heat release rate but the nanomorphology (exfoliation, intercalation and presence of tactoids) does not play any significant role, although a reasonable level of nanodispersion is necessary to achieve good flame retardancy in specific cases (mass loss calorimetry experiment). Modelling aspects for the time to ignition are also proposed in the paper. It is shown that the approach ‘nanocomposite’ gives the best results combined with conventional flame retardants (phosphinate and phosphate) and leads to synergistic effects. The aspects of nanodispersion of the nanoparticle with the flame retardant (microfiller) are fully commented in the paper using TEM and solid state NMR. Mechanisms of action are finally proposed explaining the synergy when conventional flame retardants are combined with nanoparticles.  相似文献   

8.
The relationship between flammability and thermal degradation is the consequence of the burning cycle needed to sustain fire. Thermal degradation behaviour of polymers is discussed in relation to generation of fuel and other products, including flame quenchers, and the production of char. The thermal degradation behaviour of the main classes of fire retardant is considered and illustrated by examples of the ways in which specific fire retardants exert their effect on a particular polymer.  相似文献   

9.
The effect of flame retardants such as chloroparaffin, antimony trioxide, mixtures of antimony trioxide and chloroparaffin, melamine cyanurate and pentabromotoluene on the thermal properties of cis-1,4-polyisoprene peroxide vulcanizate has been studied. The thermoanalytical curves of elastomers were interpreted. The flame retardants used, except Sb2O3 were found to change the characteristic thermal transitions of polyisoprene and to cause a decrease in its thermal stability. From among the investigated flame retardants only pentabromotoluene favoured the degradation of the elastomer in the range of its first exothermic transition. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
In this work the changes in thermal degradation characteristics of polyamide 6 (PA6) in the presence of melamine (Me) or melamine cyanurate (MC) were investigated systematically via direct pyrolysis mass spectrometry. Though thermal stability of PA6 was not affected by the presence of flame retardants, the changes in the products and in their distributions were detected. The reaction of carbonyl groups of PA6 with amine groups of melamine was the main cause for the changes in the product distribution. In the presence of melamine cyanurate, new products due to the reaction of cyanic acid generated by the decomposition of cyanurate, with the amine groups of PA6 were detected. Significant increases in the evolution temperatures of melamine and melamine cyanurate in the presence of PA6 were attributed to intermolecular interactions, most probably by H-bonding, with PA6.  相似文献   

11.
新型单组分磷氮膨胀阻燃剂的合成   总被引:1,自引:0,他引:1  
王会娅 《化学研究》2010,21(1):32-35
以新戊二醇与三氯氧磷为原料,合成了5,5-二甲基-1,3-二氧杂己内磷酰氯;进而将5,5-二甲基-1,3-二氧杂己内磷酰氯分别与苯并咪唑类衍生物反应,得到三种新型单组分磷氮膨胀阻燃剂(Ⅲa-c).利用IR1、HNMR、质谱及元素分析等表征了Ⅲa-c三种化合物的结构;并利用热重分析考察了三种化合物的热稳定性能.结果表明,目标产物Ⅲa-c均有较好的成炭性和热稳定性,600℃时残炭质量分数分别达26.93%、23.62%及18.75%.  相似文献   

12.
A thermoplastic toughener, polyether sulphone (PES) and a number of different types of flame retardants were blended in different ratios with a commercial epoxy resin triglycidyl-p-aminophenol (TGAP) and 4,4-diamino diphenyl sulphone (DDS) a curing agent. The effect of type and levels of flame retardants (FR) and the toughening agent on the curing, thermal decomposition and char oxidation behaviour of the epoxy resin was studied by the simultaneous differential thermal analysis and thermogravimetric techniques. It was observed that the toughener slightly increases the curing temperature (by up to 20 °C) but had minimal effect on the decomposition temperature of the resin. Flame retardants, however affected all stages depending upon the type of flame retardant used. The curing peak for samples containing tougher and flame retardants although slightly changed depending upon the type of FR, was not more than ± 20 °C compared to that of samples containing toughener only. All flame retardants lowered the decomposition temperature of the epoxy resin. Phosphorus- and nitrogen-containing flame retardants reduced the char oxidation leading to more residual char, whereas halogen- containing flame retardants had less effect on this stage.  相似文献   

13.
Thirteen phosphorus-containing flame retardants were synthesized in this work. The solubilities of flame retardant [(6-oxide-6H-dibenz[c,e][1,2]oxaphosphorin-6-yl)-methyl]-butanedioic acid (DDP) in selected solvents are measured. TGA measurements of the 13 phosphorus-containing flame retardants were carried out and thermal stabilities of three flame-resistant PET (FRPET) resins were investigated. A FRPET incorporated by DDP with terephthalic acid and ethylene glycol reported in literature was also discussed and compared. The thermal stability of the FRPET is improved by the incorporation of phosphorus-containing flame retardants. The LOI values of all phosphorus-containing polyesters are higher than 27%. The improvement of the flame-resistant ability is due to the formation of the char that is not only caused by the existence of phosphorus elements in the resin but also by the relative large number of carbon atoms of the phenyl group in the flame retardants.  相似文献   

14.
In this work, silane was grafted on expandable graphite via a free-radical reaction. The modified expandable graphite has an -OEt functional group which reacts with TEOS and PMMA that was modified via a sol-gel reaction using a coupling agent that contains silicon. Synergism between silicon flame retardant and expandable graphite increased the flame retardance of the materials. Expandable graphite was functionalized using a coupling agent to increase the interactive force between the organic and inorganic phases. It enhanced the thermal stability of the composites. SEM was adopted to observe the morphology of the composites, and the behavior associated with expansion after the materials had been burned is elucidated. LOI, TGA and IPDT were employed to calculate the flame retardance and thermal stability. The results indicate that the composites are halogen-free flame retardant organic/inorganic composites. Two methods for elucidating the kinetics of thermal degradation were utilized to measure the activation energy when the composites degraded in the high-temperature atmosphere.  相似文献   

15.
When analyzing a polymeric material using pyrolysis-GC, the majority of the peaks seen are degradation products from the polymer matrix, but there may be specific compounds present resulting from the presence of antioxidants, plasticisers, stabilizers, flame retardants and other additives. Some of these compounds may be volatile or semi-volatile and appear as intact molecules, while others are larger and only appear as fragments after the pyrolysis. In understanding the pyrolysis of the complete system, it is important to understand the behavior of such additives under the thermal conditions used to analyze the polymer matrix.This paper presents data for several polymer additives, showing their contribution to the analytical results when studying typical polymers using Py-GC/MS. Specific types of additives include phenolic antioxidants, hindered amine light stabilizers, phthalates and phosphites.It was determined that for some additives, especially when analyzing simple polymers, co-analysis of the polymer and additive was feasible. For other, more complex formulas, a multi-step approach permitted a thermal separation of compound families and simplified the analysis. For some additives, especially in the parts-per-million range, pyrolysis with selected or extracted ion mass spectrometry was the most informative.  相似文献   

16.
Thermal Degradation of Cotton Cellulose   总被引:6,自引:0,他引:6  
The thermal degradation of cotton cellulose treated with chemical mixtures containing P and N was studied by thermal analysis, infrared spectroscopy, Char yield and limiting-oxygen-index (LOI). Our experiments demonstrated the following facts. The temperatures and activation energies of pyrolysis were lower for cotton cellulose treated with flame retardants than those for untreated samples and the values of Char yield and LOI were greater for treated cotton than those for untreated one. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Because of good thermal stability, nonflammability and rich structural designability, ionic liquids (ILs) have been used as flame retardants for poly(lactic acid) (PLA). However, as a small molecule, IL has the disadvantages of poor thermal stability and water resistance, and so on. In this paper, an imidazole‐type poly(ionic liquid) (PIL) containing a phosphate anion was synthesized using 1‐vinylimidazole, triethyl phosphate, and 1,2‐divinylbenzene and marked as PDVE[DEP]. The PDVE[DEP] was used to improve the flame retardancy of PLA. The flame retardancy and thermal degradation behaviors of PLA/PDVE[DEP] composites were investigated by the limited oxygen index (LOI), UL‐94 vertical burning, cone calorimetry, and thermal gravity analysis, and so on. The results showed that only 1.0 wt% PDVE[DEP] allows PLA to achieve the UL‐94 V0 rating and obtain LOI value 25.6 vol%. The PDVE[DEP] improve the flame retardancy of PLA by melting‐away mode. In addition, it catalyzes the transesterification of PLA and changes the degradation products.  相似文献   

18.
Evaluating and analyzing the performance of flame retardant (FR) textiles are a critical part of research and development of new FR textiles products by the industry. The testing methods currently used in the industry have significant limitations. Most analytical and testing techniques are not able to measure heat release rate (HRR), the single most important parameter in evaluating the fire hazard of materials. It is difficult to measure HRR of textile fabrics using cone calorimetry because textile fabrics are dimensionally thin samples. The recently developed micro-scale combustion calorimetry (MCC) is able to measure the following flammability parameters for textile using milligram sample sizes: heat release capacity, HRR, temperature at peak heat release rate (PHRR), total heat release and char yield. In this research, we applied MCC to evaluate the flammability of different textile fabrics including cotton, rayon, cellulose acetate, silk, nylon, polyester, polypropylene, acrylic fibers, Nomex and Kevlar. We also studied the cotton fabrics treated with different flame retardants. We found that MCC is able to differentiate small differences in flammability of textile materials treated with flame retardants. We were also be able to calculate the limiting oxygen index (LOI) using the thermal combustion properties of various textile samples measured by the MCC. The calculated LOI data have yielded good agreement with experimental LOI results. Thus, we conclude that MCC is an effective new analytical technique for measuring textile flammability and has great potentials in the research and development of new flame retardants for textiles.  相似文献   

19.
用裂解气相色谱(PyGC)考察了经三种类型阻燃剂(含磷、含溴、含溴和磷)改性的聚丙烯的热稳定性。利用PyGC-MS法分析不同样品的高温裂角产物,以此来推测阻燃材料受热分解时气相以及凝聚相所发生的反应,推断阻燃机理,分析影响阻燃效果的因素,为阻燃剂的开发提供有益参考。结果证实,它们都影响聚丙烯的热降解。溴系阻燃剂和磷系阻燃剂是分别从气相阻断、凝固相加速成炭实现阻止燃烧的,而磷-溴型阻燃剂同时具备单纯含磷或者含溴阻燃能力。  相似文献   

20.
Atmospheric pressure photo ionisation has been evaluated for the analysis of brominated flame retardants and their related degradation products by LC-MS. Degradation mixtures obtained from the photochemical degradation of tetrabromobisphenol A and decabromodiphenylether were used as model systems for the assessment of the developed methodology. Negative ion mode gave best results for TBBPA and its degradation compounds. [M - H]- ions were formed without the need of using a doping agent. MS and MS/MS experiments allowed the structural identification of new TBBPA "polymeric" degradation compounds formed by attachment of TBBPA moieties and/or their respective cleavage products. In the case of polybromodiphenylethers, the positive mode provided M*+ ions and gave better results for congeners ranging from mono- to pentabromodiphenylethers whereas for higher bromination degrees, the negative ion mode (providing [M - Br + O]- ions) was best suited. Under both positive and negative ionisation modes, the use of toluene as doping agent gave better results. Liquid chromatography-mass spectrometry by means of atmospheric pressure photo-ionisation was applied to the analysis of aromatic brominated flame retardants and their degradation products. This methodology proved to be particularly useful, for the characterisation and structural identification of some compounds which are not amenable to GC-MS, especially in the case of apolar "polymeric" degradation products of tetrabromobisphenol A investigated in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号