首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
This study aimed to evaluate the suitability of using unfired and fired pumice as cement replacement materials as well as their effect on the thermal resistance of hardened ordinary Portland cement (OPC) pastes. Different OPC–pumice (unfired and fired) blends were prepared by partial replacement of OPC by 0, 10 and 20 of pumice (mass%). The effect of the addition of 1 and 5 % of active alumina on the mechanical properties and thermal resistance of different OPC–pumice (unfired) blends was investigated. The fire resistance test was done by exposing the hardened blended cement cubes to elevated temperatures of 200, 400, 600 and 800 °C for 3 h and allowed them to cool down to room temperature before testing for their mechanical properties. The phase composition and thermal analysis of some selected specimens were investigated by XRD, DSC and DTA/TG techniques. The obtained results indicated that replacing OPC by 10 and 20 % by pumice (unfired and fired) improved its thermal stability at different firing temperatures. The cement blend prepared by replacement of OPC with 10 % pumice showed the highest fire resistance. The addition of 1 and 5 % of alumina (A) to OPC–pumice blends causes a notable improve in their mechanical properties and thermal resistance.  相似文献   

2.
A new intumescent flame retardant (PSiNII), which contains silicon, phosphorus, and nitrogen elements, has been synthesized and incorporated into polypropylene (PP). Its effect on the properties of PP is investigated based on flame retardancy, thermal properties, mechanical properties, and morphologies. The flame retardancy is evaluated by the limiting oxygen index value. The thermal properties (oxidative behaviors and thermal stability) are investigated by thermogravimetric analysis under nitrogen and air atmosphere. The mechanical properties are researched based on the maximum tensile stress and relative strain at break. The morphologies of PP/PSiNII are studied by the scanning electron micrograph. Their flame retardancy and thermal stability are improved by introducing PSiNII. PP/PSiNII blends can achieve high fire performance and keep high mechanical property at the same time. During a fire, the melt‐dripping behaviors of PP‐containing PSiNII are improved. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2548–2556, 2005  相似文献   

3.
To improve the ultraviolet resistance and thermal stability of waterborne polyurethane, stable waterborne polyurethane/nano-cerium oxide hybrid dispersions were obtained by adding nano-cerium colloids to previously synthesized waterborne polyurethane dispersions. The dried ceria colloid was characterized by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The XRD results indicated the prepared CeO2 was a face-centered cubic structure. The prepared polyurethane/CeO2 dispersions were studied by dynamic light scattering (DLS), transmission electron microscopy (TEM), UV–Vis spectroscopy and accelerated weathering test. The dried polyurethane/CeO2 films were characterized using thermogravimetric analysis (TGA). The DLS analysis indicated the particles average diameter of hybrids emulsion was bigger than that of the pure waterborne polyurethane dispersion. TG analysis and accelerated weathering test suggested the hybrid latex films had better thermal stability and mechanical properties than those of the pure waterborne polyurethane. The UV–Vis absorption capacity of the dispersions prepared was increasing with the amount of CeO2 colloid increased.  相似文献   

4.
Polypropylene + low density polyethylene (PP + LDPE) blends involving 0, 25, 50, 75 and 100 wt% of PP with dialkyl peroxide (DAP) were prepared by melt blending in a single‐screw extruder. The effects of adding dialkyl peroxide on mechanical and thermal properties of PP + LDPE blends have been studied. It was found that at lower concentrations of peroxide (e.g., 0–0.08 wt% of dialkyl peroxide) LDPE component is cross‐linked and Polypropylene (PP) is degraded in all compositions of PP + LDPE blends. Mechanical properties (Tensile strength at break, at yield and elongation at break), Melt flow index (MFI), hardness, Scanning Electron Microscope (SEM) and thermal analyses (DSC) of these blends were examined. Because of serious degradation or cross‐linking the mechanical properties and the crystallinty (%) of those products were decreased as a result of increasing peroxide content. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Poly(lactic acid) (PLA) and polypropylene (PP) blends of various proportions were prepared by melt-compounding. The miscibility, phase morphology, thermal behavior, and mechanical and rheological properties of the blends were investigated. The blends were immiscible systems with two typical morphologies, spherical droplet and co-continuous, and could be obtained at various compositions. Complex viscosity, storage modulus and loss modulus depend on the PP content. Thermal degradation of all blends led to two weight losses, for PLA and PP. The incorporation of PP improved the thermal stability of the blend. The effect of compatibilizer (ethylene-butyl acrylate-glycidyl methacrylate terpolymer, EBA-GMA) on the morphology and mechanical properties of 70/30 w/w PLA/PP blends was investigated. The tensile strength of these blends reached a maximum for 2.5 wt% EBA-GMA, and impact strength increased with increasing EBA-GMA content, suggesting that EBA-GMA is an effective compatibilizer for PLA/PP blends.  相似文献   

6.
Thermal stability of ester-thermoplastic polyurethane (TPU)/polypropylene (PP) and ether-TPU/PP blends was evaluated by thermogravimetric studies. Thermal studies were made as a function of blend ratio. Effects of compatibilization using MA-g-PP and nanoclay addition on thermal stability were evaluated. Mass loss at 400 °C was found to decrease with increasing PP content were determined. Finally the compatibility and crystallization behavior of the blends were studied by differential scanning calorimetry. Compared to the ether-TPU blend nanocomposites, the ester-TPU blends showed better compatibility and thermal stability.  相似文献   

7.
Motor gasoline must present characteristics that guarantee its quality and the good performance of internal combustion engines without harming the environment. The contamination of gasoline by solvents can seriously adulterate its physical-chemical properties and affect its volatility and detonation capacity. To investigate organic solvent adulteration in gasoline samples, thermal analysis technique (TG/DTG) can be used as an auxiliary tool in the study of the thermal behavior of liquid fuels, as demonstrated by the present work involving a comparative analysis of kerosene-free and doped gasoline.  相似文献   

8.
First time we report the synthesis, structural characterization and thermal behavior of an unusual N3 ? containing alumino-silicate sodalite mineral. Azide sodalite, Na8[AlSiO4]6(N3)2 has been synthesized under hydrothermal conditions at 433 K in steel lined Teflon autoclave. The structural and microstructural properties of azide sodalite mineral was characterized by various methods including FT-IR, XRD, SEM, TGA, and MAS NMR. Crystal structure have been refined by Rietveld method in \(P\bar 43n\) space group, indicating that the N3 ? sodalite has cubic in lattice. High temperature study was carried out to see the effect of thermal expansion on cell dimension (a o) of azide sodalite. Thermal behavior of sodalite was also assessed by thermogravimetric method.  相似文献   

9.
动态固化聚丙烯/环氧树脂共混物的研究   总被引:3,自引:0,他引:3  
将动态硫化技术应用于热塑性树脂 热固性树脂体系 ,制备了动态固化聚丙烯 (PP) 环氧树脂共混物 .研究了动态固化PP 环氧树脂共混物中两组分的相容性、力学性能、热性能和动态力学性能 .实验结果表明 ,马来酸酐接枝的聚丙烯 (PP g MAH)作为PP和环氧树脂体系的增容剂 ,使分散相环氧树脂颗粒变细 ,增加了两组分的界面作用力 ,改善了共混物的力学性能 .与PP相比 ,动态固化PP 环氧树脂共混物具有较高的强度和模量 ,含 5 %环氧树脂的共混物拉伸强度和弯曲模量分别提高了 30 %和 5 0 % ,冲击强度增加了 15 % ,但断裂伸长率却明显降低 .继续增加环氧树脂的含量 ,共混物的拉伸强度和弯曲模量增加缓慢 ,冲击强度无明显变化 ,断裂伸长率进一步降低 .动态力学性能分析 (DMTA)表明动态固化PP 环氧树脂共混物是两相结构 ,具有较高的储能模量 (E′)  相似文献   

10.
Summary : Phosphorus-nitrogen intumescent product (R2000) was filled into polypropylene (PP) as a flame retardant. The neat PP and flame-retarded PP blends were studied for their structural and mechanical properties after verification of the flame retardancy character of blends. In this paper, the influence of incorporation of different amount (5%, 10%, 15%, 20%, and 25%) of R2000 was studied. The flame retardancy is evaluated by limiting oxygen index (LOI) value, which is enhanced from 17.5 for pure PP to 22.7 for the blend comprising 15% intumescent product, phosphorus-nitrogen based (R2000). The thermal degradation behaviour of the PP/R2000 blends was investigated using thermogravimetric analysis (TGA) under nitrogen (N2) and oxygen (O2) atmospheres. The influence of the R2000 on the PP crystallization was examined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Further, the mechanical properties of the materials were studied by dynamic mechanical analysis (DMA). The incorporation of the flame retardant had no effect on the crystallization of the neat polymer and the mechanical properties of the materials remained unaffected.  相似文献   

11.
Polypropylene (PP) blends with acrylonitrile-butadiene-styrene (ABS) were prepared using the styrene-ethylene-butylene-styrene copolymer (SEBS) as a compatibilizing agent. The blends were prepared in a co-rotational twin-screw extruder and injection molded. Torque rheometry, Izod impact strength, tensile strength, heat deflection temperature (HDT), differential scanning calorimetry, thermogravimetry, and scanning electron microscopy properties were investigated. The results showed that there was an increase in the torque of PA6/ABS blends with SEBS addition. The PP/ABS/SEBS (60/25/15%) blend showed significant improvement in impact strength, elongation at break, thermal stability, and HDT compared with neat PP. The elastic modulus and tensile strength have not been significantly reduced. The degree of crystallinity and the crystalline melting temperature increased, indicating a nucleating effect of ABS. The PP/ABS blends compatibilized with 12.5% and 15% SEBS presented morphology with well-distributed fine ABS particles with good interfacial adhesion. As a result, thermal stability has been improved over pure PP and the mechanical properties have been increased, especially impact strength. In general, the addition of the SEBS copolymer as the PP/ABS blend compatibilizer has the advantage of refining the blend's morphology, increasing its toughness and thermal stability, without jeopardizing other PP properties.  相似文献   

12.
In this study, a series of styrene‐b‐ethylene‐co‐butylene‐b‐styrene copolymer (SEBS)/polypropylene (PP)/oil blends with different kinds of oil composition was developed through melt blending. The effect of oil with different composition and properties on its phase equilibrium and “redistribution” in multiphasic SEBS elastomer was systematically studied for the first time. Moreover, an integral influencing mechanism of oil composition on the structure and properties of SEBS/PP/oil blends was also put forward. The mineral oil was mainly distributed in ethylene/butylene (EB)/PP phase, which greatly enhanced the processing flowability of SEBS/PP/oil blends. With increasing oil CN content, a redistribution of oil appeared and excess naphthenic oil (NO) entered the interphase of soft and hard phases. The dynamic mechanical thermal analysis (DMTA) analysis indicated that the polystyrene (PS) phase was plasticized, which also helped to improve the processing fluidity of blends. However, the plasticizing of physical cross‐linking point PS resulted in a decrease in mechanical strength and thermal stability. Small‐angle X‐ray scattering (SAXS) and transmission electron microscope (TEM) results showed that PS phase (45 nm to 55 nm) cylindrically distributed in EB/PP/oil matrix, the excess NO in the interphase enlarged the distance between PS phase and widen the escape channel for oil migration. At over 45% oil CN content, the electron density difference between soft and hard phases reduced to the minimum, same as TgPS, indicating a deeper plasticizing effect. The PS phase swelled and exhibited elastic behavior; thus, the force could be uniformly transferred between two phases. Importantly, a recover in strength and thermal stability was observed in O‐5 blend. This work significantly filled the gap of studies in oil‐extended thermoplastic elastomers (TPEs), exhibiting great theoretical guiding significance and application value.  相似文献   

13.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organically modified clay (organoclay) toughened with maleated styrene-ethylene-butylene-styrene (SEBS-g-MA) were prepared by melt compounding using co-rotating twin-screw extruder followed by injection molding. X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to characterize the structure of the nanocomposites. The mechanical properties of the nanocomposites were determined by tensile, flexural, and notched Izod impact tests. The single edge notch three point bending test was used to evaluate the fracture toughness of SEBS-g-MA toughened PA6/PP nanocomposites. Thermal properties were studied by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). XRD and TEM results indicated the formation of the exfoliated structure for the PA6/PP/organoclay nanocomposites with and without SEBS-g-MA. With the exception of stiffness and strength, the addition of SEBS-g-MA into the PA6/PP/organoclay nanocomposites increased ductility, impact strength and fracture toughness. The elongation at break and fracture toughness of PA6/PP blends and nanocomposites were increased with increasing the testing speed, whereas tensile strength was decreased. The increase in ductility and fracture toughness at high testing speed could be attributed to the thermal blunting mechanism in front of crack tip. DSC results revealed that the presence of SEBS-g-MA had negligible effect on the melting and crystallization behavior of the PA6/PP/organoclay nanocomposites. TGA results showed that the incorporation of SEBS-g-MA increased the thermal stability of the nanocomposite.  相似文献   

14.
Polyethylene‐g‐polystyrene (PE‐g‐PS) was synthesized as a compatibilizer for polypropylene/polystyrene­(PP/PS) blends by the living radical polymerization of styrene with polyethylene‐co‐glycidylmethacrylate (PE‐co‐GMA). The compatibilizer effect of PE‐g‐PS on the morphology and thermal properties of PP/PS blends was investigated. The crystalline temperature of PP in PP/PS blends decreased with increasing PE‐g‐PS contents. Morphologies of PP/PE‐g‐PS/PS blends showed much better dispersion of each domain for higher PE‐g‐PS contents. The molecular weight of PS segment in PP/PE‐g‐PS/PS blend was increased by addition of styrene monomer during the post melt blending process where post living radical polymerization reaction proceeded. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Reactive melt blends of an ethylene‐propylene‐diene terpolymer (EPDM) based thermoplastic elastomer (TPE), maleic anhydride grafted polypropylene (MAH‐g‐PP), and nylon 6 were prepared in a single screw extruder and evaluated in terms of morphological, rheological, thermal, dynamic mechanical, and mechanical properties of the blends. It was found that MAH‐g‐PP‐co‐nylon 6 copolymers were in situ formed and acted as effective compatibilizers for polypropylene (PP) and nylon 6. Phase separation of PP and EPDM in TPE increased with the addition and increasing amount of MAH‐g‐PP and nylon 6, leading to decreased glass transition temperature (Tg) of TPE and increased crystalline melting temperature (Tm) of PP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
A series of flexible polyurethane foam (FPUF) and monolithic polyurethane (PU) sandwich panels reinforced with different contents of TiO2 nanoparticles (0, 0.5 and 1 mass%) have been successfully prepared by compression molding process at room temperature. The influence of TiO2 nanoparticles on the thermal properties of PU matrix has been investigated by thermogravimetric and dynamic mechanical thermal analysis (DMTA). The morphology of porous structure of FPUF sandwich panels has been characterized by scanning electron microscopy. The presence of TiO2 nanoparticles as reinforcement has improved the thermal properties of the FPUF and PU sandwich panel samples. It has been observed that FPUF and PU sandwich panel reinforced with 1 mass% of TiO2 nanoparticles possessed the highest enhancement in thermal properties in all accomplished thermal tests. The DMTA results for the FPUF and PU sandwich panel reinforced with 1 mass% of TiO2 nanoparticles indicated that the storage modulus and loss modulus have increased about 1.22 and 1.25 times, 1.5 and 1.55 times, respectively, compared to pure samples. Furthermore, the glass transition (T g) obtained from the damping factor (tanδ) curves has increased 2 and 1 °C for FPUF and PU sandwich panels, respectively.  相似文献   

17.
The present investigation deals with the mechanical, thermal, and morphological properties of binary nylon 66/maleic anhydride grafted ethylene propylene rubber (EPR‐g‐MA) blends at different dispersed phase (EPR‐g‐MA) concentrations. The effects of EPR‐g‐MA concentration and dispersed particle size on the mechanical properties of the blends were studied. Analysis of the tensile data in terms of various theoretical models revealed the variation of stress concentration effect with blend composition and the improvement of interfacial adhesion between dispersed rubber phase and nylon 66 matrix. The thermal degradation of the blends was analyzed by nonisothermal thermogravimetric analysis (TGA). It was found that the activation energy (Ea) and overall reaction order of thermal degradation decreased with increasing EPR‐g‐MA content. The scanning electron microscopic (SEM) analysis showed a significant decrease in dispersed particle size with increasing EPR‐g‐MA content, which was explained on the basis of the level of chemical interaction (in situ compatibilization) between nylon 66 and EPR‐g‐MA. The surface morphology of the nylon 66/EPR‐g‐MA blends was illustrated by the roughness of atomic force microscopy (AFM) images. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Cobalt zinc ferrite, Co0.8Zn0.2Fe2O4, nanoparticles have been synthesized via autocatalytic decomposition of the precursor, cobalt zinc ferrous fumarato hydrazinate. The X-ray powder diffraction of the ‘as prepared’ oxide confirms the formation of single phase nanocrystalline cobalt zinc ferrite nanoparticles. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric and differential thermal analysis. The precursor has also been characterized by FTIR, and chemical analysis and its chemical composition has been determined as Co0.8Zn0.2Fe2(C4H2O4)3·6N2H4. The Curie temperature of the ‘as-prepared oxide’ was determined by AC susceptibility measurements.  相似文献   

19.
《先进技术聚合物》2018,29(8):2344-2351
The recycled polypropylene/recycled high‐impact polystyrene (R‐PP/R‐HIPS) blends were melt extruded by twin‐screw extruder and produced by injection molding machine. The effects of polystyrene‐b‐poly(ethylene/propylene)‐b‐polystyrene copolymer (SEPS) used as compatibilizer on the mechanical properties, morphology, melt flow index, equilibrium torque, and glass transition temperature (Tg) of the blends were investigated. It was found that the notch impact strength and the elongation at break of the R‐PP/R‐HIPS blends with the addition of 10 wt% SEPS were 6.46 kJ/m2 and 31.96%, which were significantly improved by 162.46% and 57.06%, respectively, than that of the uncompatibilized blends. Moreover, the addition of SEPS had a negligible effect on the tensile strength of the R‐PP/R‐HIPS blends. Additionally, the morphology of the blends demonstrated improved distribution and decreased size of the dispersed R‐HIPS phase with increasing the SEPS content. The increase of the melt flow index and the equilibrium torque indicated that the viscosity of the blends increased when the SEPS was incorporated into the R‐PP/R‐HIPS blends. The dynamic mechanical properties test showed that when the content of SEPS was 10 wt%, the difference of Tg decreased from 91.72°C to 81.51°C. The results obtained by differential scanning calorimetry were similar to those measured by dynamic mechanical properties, indicating an improved compatibility of the blends with the addition of SEPS.  相似文献   

20.
MgFe2O4 (Mg-ferrite) nanoparticles encapsulated in amorphous SiO2 were prepared by the wet chemical method. The particle sizes were estimated, based on the X-ray diffraction peaks, to be between 3 and 8 nm, depending on the annealing temperature. The particle size increased as the annealing temperature increased. From the magnetization measurements, the blocking temperature, T b, was found to be between 30 and 60 K. The magnetization values varied with the annealing or quenching conditions. To clarify the process of crystal growth, thermogravimetric and differential thermal analysis (TG-DTA) measurements were performed and the results were compared with the X-ray diffraction patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号