首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new, accurate and sensitive reversed-phase high-performance liquid chromatography (RP-HPLC) as analytical method for the quantitative determination of 11 antibiotics (drugs) and the main metabolites of five of them present in human urine has been worked out, optimized and validated. The analytes belong to four different groups of antibiotics (sulfonamides, tetracyclines, penicillins and anphenicols). The analyzed compounds were sulfadiazine (SDI) and its N4-acetylsulfadiazine (NDI) metabolite, sulfamethazine (SMZ) and its N4-acetylsulfamethazine (NMZ), sulfamerazine (SMR) and its N4-acetylsulfamerazine (NMR), sulfamethoxazole (SMX), trimetroprim (TMP), amoxicillin (AMX) and its main metabolite amoxicilloic acid (AMA), ampicillin (AMP) and its main metabolite ampicilloic acid (APA), chloramphenicol (CLF), thiamphenicol (TIF), oxytetracycline (OXT) and chlortetracycline (CLT). For HPLC analysis, diode array (DAD) and fluorescence (FLD) detectors were used. The separation of the analyzed compounds was conducted by means of a Phenomenex® Gemini C18 (150 mm × 4.6 mm I.D., particle size 5 μm) analytical column with LiChroCART® LiChrospher® C18 (4 mm × 4 mm, particle size 5 μm) guard column. Analyzed drugs were determined within 34 min using formic acid 0.1% in water and acetonitrile in gradient elution mode as mobile phase. A linear response was observed for all compounds in the range of concentration studied. Two procedures were optimized for sample preparation: a direct treatment with methanol and acetonitrile and a solid phase extraction procedure using Bond Elut® Plexa™ columns. The method was applied to the determination of the analytes in human urine from volunteers under treatment with different pharmaceutical formulations. This method can be successfully applied to routine determination of all these drugs in human urine samples.  相似文献   

2.
Sevgi Tatar Ulu 《Talanta》2007,72(3):1172-1177
A sensitive and specific high-performance liquid chromatography (HPLC) method has been developed and validated for the quantification of mexiletine (MEX) in human plasma and urine. It uses solid-phase extraction (SPE) followed by an automated reversed-phase HPLC with a pre-column derivatization with 4-chloro-7-nitrobenzofurazan (NBD-CI) and UV-vis Absorbance detection. The process was set as: the UV-vis Absorbance wavelength was set at 458 nm. Chromatographic separation was performed on a Phenomenex-C18 Column (Aqua, 150 mm × 4.6 mm i.d. with 5 μm particle size) with the mobile phase consisting of acetonitrile and water (80:20, v/v), and the flow rate was set at 1.0 mL min−1. Calibration of the overall analytical procedure gave a linear signal (r > 0.9998) over a MEX concentration range of 0.2-2.0 μg mL−1 in human plasma and urine. The detection limit in plasma and urine was 0.1 μg mL−1. Intra- and inter-day precision of the assay at three concentrations within this range were 0.31-2.50%. The high specificity and sensitivity have been achieved by this fast method (total run-time <6 min). The method has been successfully validated in human plasma and urine and it has been shown to be precise, accurate and reliable.  相似文献   

3.
A simple and sensitive high-performance liquid chromatographic (HPLC) method was developed for quantification of aceclofenac in rat plasma. Ibuprofen was used as an internal standard (IS). The present method used protein precipitation for extraction of aceclofenac from rat plasma. Separation was carried out on reversed-phase C18 column (250 mm × 4.6 mm, 5 μ) and the column effluent was monitored by UV detector at 282 nm. The mobile phase used was methanol-triethylamine (pH 7.0; 0.3% v/v in Milli-Q water) (60:40%, v/v) at a flow rate of 1.0 mL min−1. This method was linear over the range of 50.0-3500.0 ng mL−1 with regression coefficient greater than 0.99. The mean recovery of aceclofenac and IS were 84.62 ± 3.23 and 89.19 ± 1.57%, respectively and the method was found to be precise, accurate, and specific during the study. The method was successfully applied for pharmacokinetic study of aceclofenac in rats.  相似文献   

4.

Background

Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide (NO) formation inhibitor, has emerged as a promising biomarker of NO-associated endothelial dysfunction in cardiovascular diseases as well in chronic renal failure. The interest in potentially fundamental role of this metabolite, in basic and clinical research, led to the development of numerous analytical methods for the quantitative determination of ADMA and dimethylarginines in biological systems, notably plasma, serum and urine.

Objectives

The aim of this work was to present a simple, fast and accurate UPLC-tandem-MS-based method for the simultaneous determination and quantification of arginine, ADMA, SDMA, NMMA, homo-arginine and citrulline. This method is designed for high sample throughput of only 10 μL of human plasma, serum or urine.

Methods

The analysis time is reduced to 1.9 min by an ultrahigh-performance liquid chromatography run coupled with electrospray ionization (ESI) in the positive mode tandem mass spectrometry detection.

Results

The method was validated in plasma, serum and urine. Correlation coefficients (r2) of the calibration curves in all matrices considered ranged from 0.9810 to 0.9993. Inter- and intra-assay precision, accuracy, recovery and carry-over were evaluated for validation. The LOD was 0.01 μM for all compounds in water, plasma and serum and 0.1 μM in urine. The LOQ was 0.05 μM for ADMA, SDMA, NMMA and H-Arg and 0.5 μM for Arg and Cit in water, plasma and serum; while in urine was 0.1 μM for ADMA, SDMA, NMMA and H-Arg and 0.5 μM for Arg and Cit.The precision was ranged from 1% to 15% expressed as CV% and the accuracy (bias %) was <±7% for all added concentrations with the exception of NMMA (−10%).ADMA mean plasma levels, measured in healthy adults and newborns, were in accord with literature data published: (M ± SD) 0.56 ± 0.10 μM and 0.84 ± 0.21 μM, respectively, showing that ADMA levels in plasma decreased with age. In serum we have similar data (0.54 ± 0.18 μM and 1.14 ± 0.36 μM), while in neonatal urine ADMA was 11.98 ± 7.13 μmol mmol−1 creatinine.

Conclusions

Data from calibration curves and method validation reveal that the method is accurate and precise. The fast run time, the feasibility of high sample throughput and the small amount of sample required make this method very suitable for routine analysis in the clinical setting.  相似文献   

5.
19-Nortestosterone (nandrolone) major metabolites in human urine are excreted as sulfoconjugated and glucuroconjugated forms. A sensitive and selective liquid chromatography/tandem mass spectrometry (LC/MS/MS) method in negative ESI mode was developed for direct quantification of 19-norandrosterone sulfate (19-NAS) and 19-noretiocholanolone sulfate (19-NES). For both sulfoconjugates, the [M−H] ion at m/z 355 and the fragment ion at m/z 97 were used as the precursor and product ions, respectively. The purification method involved a complete and rapid separation of sulfates and glucuronides in two extracts after loading the sample on a weak anion exchange solid phase extraction support (SPE Oasis® WAX). Then, sulfates were separated by LC (Uptisphere® ODB, 150 mm × 3.0 mm, 5 μm) and analyzed on a linear trap and a triple quadrupole mass spectrometer. The lower limit of detection (LLOD) and lowest limit of quantification (LLOQ) were of 100 pg mL−1 and 1 ng mL−1, respectively. Assay validation demonstrated good performances in terms of trueness (92.0-104.9%), repeatability (0.6-7.2%) and intermediate precision (1.3-10.8%) over the range of 1-2500 ng mL−1. Finally, 19-NAS and 19-NES in urine samples collected after intake of 19-norandrostenedione (nandrolone precursor) were quantified. This assay may be easily implemented to separate glucuronide and sulfate steroids from urine specimens prior to quantification by LC/MS/MS.  相似文献   

6.
A novel method has been developed for the determination of epirubicin in human plasma by ultra performance liquid chromatography combined with tandem mass spectrometry (UPLC-MS/MS). Epirubicin and internal standard epidaunorubicin were achieved from plasma via solid-phase extraction (SPE) using Oasis HLB cartridge. The analysis was performed on an AcQuity UPLC™ BEH C18 column (1.7 μm, 50 mm × 1 mm i.d.) utilizing a gradient elution profile and a mobile phase consisting of 0.1% formic acid in water and acetonitrile. The analytes were detected using an electrospray ionization tandem mass spectrometry in positive ion mode with multiple reaction monitoring (MRM). This method combines both advantages of UPLC and MS/MS, producing superior reliability, sensitivity and accuracy to previously published methods. The calibration curve was linear (r2 = 0.998) over the concentration range of 0.50-100.0 ng/ml. The limits of detection (LOD) and quantification (LOQ) for epirubicin were 0.10 and 0.50 ng/ml using 0.2 ml plasma sample, respectively. Recoveries of greater than 89% with intra- and inter-day precision (R.S.D.) less than 12% were obtained at concentrations above the LOQ. The present method has been successfully applied to analyze human plasma samples taken from patients administered epirubicin intravenously. Also, the principal metabolite epirubicinol was detected in all the patient plasma samples under investigation. The proposed method is very rapid, reliable and sensitive, and can be applicable to therapeutical drug monitoring and pharmacokinetic studies of epirubicin.  相似文献   

7.
No previous publications about percutaneous absorption of polyethylene glycol 25 p-aminobenzoic acid (PEG-25 PABA) have been found in the literature and the expected levels to be found in human urine after sunscreens use are unknown. The method proposed here is suitable to determine PEG-25 PABA in the urine of sunscreens users in order to carry out studies on body accumulation/excretion. It is based on solid-phase extraction (SPE) with size-exclusion liquid chromatography determination. Solid-phase extraction allows the analyte to be retained and subsequently eluted for a clean-up, using a silica-based cartridge. The size-exclusion liquid chromatography of the eluted allows the rest of matrix interferences to be avoided. Fluorescence intensity was measured at λem = 350 nm (λexc = 300 nm). The sensitivity of the proposed method is in the order of 450 ± 5 mL ng−1 and the detection limit (3 Sy/x/b) in the measured solutions is in the order of 13 ng mL−1, that is 2.6 ng mL−1 in urine samples. The method enables PEG-25 PABA to be determined in both, spiked and unspiked human urine samples. Results obtained for spiked human urine samples (11-100 ng mL−1) demonstrated the accuracy of the method. The mean relative standard deviation of the results was in the order of 3-10%. Three volunteers applied a sunscreen lotion containing a 8% PEG-25 PABA sunscreen cream and their urinary excretion was controlled from the moment of application until the excreted amounts were no longer detectable.  相似文献   

8.
d-Penicillamine and tiopronin are drugs widely used for the treatment of many diseases. Because of the relatively high frequency of side effects to these compounds, some of which are dose-related, drug monitoring in urine samples during treatment is advisable. In this paper, we describe a simple method for the determination of tiopronin and d-penicillamine in human urine. The method was based on derivatization with 2-chloro-1-methylquinolinium tetrafluoroborate followed by ion-pairing reversed-phase liquid chromatography separation and ultraviolet-absorbance detection. 2-S-quinolinium derivatives of thiols were detected at 355 nm. The derivatization was optimized in terms of pH and time of the reaction. Baseline separation was achieved on an analytical Zorbax SB C-18 (5 μm, 150 mm × 4.6 mm) column with a mobile phase consisting of pH 2.0 0.09 mol L−1 trichloroacetic acid buffer (component A) and acetonitrile (component B) pumped at 1.0 mL min−1. Gradient elution was used: 0-4 min, 12% B; 4-8 min, 12-40% B; 8-12 min, 40-12% B. The d-penicillamine and tiopronin standards added to the urine show that the response of the detector is linear within the range studied, from 1 to 200 μmol L−1 urine. The imprecision ranges for tiopronin and d-penicillamine were within 1.61-8.24% and 2.92-10.60%, respectively. The analytical accuracy for determined compounds was from 97.24 to 109.39%. The lower limits of detection and quantitation were 0.5 μmol L−1 and 1.0 μmol L−1 urine, respectively. This method can be used for routine clinical monitoring of the title thiol-drugs. Cysteine can be measured concurrently, if needed.  相似文献   

9.
Chicken is the most consumed meat in North America. Concentrations of arsenic in chicken range from μg kg−1 to mg kg−1. However, little is known about the speciation of arsenic in chicken meat. The objective of this research was to develop a method enabling determination of arsenic species in chicken breast muscle. We report here enzyme-enhanced extraction of arsenic species from chicken meat, separation using anion exchange chromatography (HPLC), and simultaneous detection with both inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization tandem mass spectrometry (ESIMS). We compared the extraction of arsenic species using several proteolytic enzymes: bromelain, papain, pepsin, proteinase K, and trypsin. With the use of papain-assisted extraction, 10 arsenic species were extracted and detected, as compared to 8 detectable arsenic species in the water/methanol extract. The overall extraction efficiency was also improved using a combination of ultrasonication and papain digestion, as compared to the conventional water/methanol extraction. Detection limits were in the range of 1.0–1.8 μg arsenic per kg chicken breast meat (dry weight) for seven arsenic species: arsenobetaine (AsB), inorganic arsenite (AsIII), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenate (AsV), 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone), and N-acetyl-4-hydroxy-m-arsanilic acid (NAHAA). Analysis of breast meat samples from six chickens receiving feed containing Roxarsone showed the presence of (mean ± standard deviation μg kg−1) AsB (107 ± 4), AsIII (113 ± 7), AsV (7 ± 2), MMA (51 ± 5), DMA (64 ± 6), Roxarsone (18 ± 1), and four unidentified arsenic species (approximate concentration 1–10 μg kg−1).  相似文献   

10.
Kynurenine (KYN), a tryptophan metabolite, is a crucial compound for modulating neurotransmission because it can be metabolized in vivo into both quinolinic acid and kynurenic acid, which are the agonist and antagonist, respectively, of N-methyl-d-aspartate receptor. For the highly sensitive detection of KYN by high-performance liquid chromatography (HPLC), a fluorescence derivatization of KYN with a benzofurazan-type fluorogenic reagent, 4-N,N-dimethylaminosulfonyl-7-fluoro-2,1,3-benzoxadiazole (DBD-F) was investigated in the present study. KYN was derivatized with DBD-F (DBD-KYN) at 60 °C for 30 min, and separated on an octadecylsilica column with a gradient elution of the mobile phase, which consists of 0.1% formic acid in acetonitrile/methanol/water. DBD-KYN was detected fluorimetrically at 553 nm with an excitation wavelength of 431 nm. The limits of detection and quantification were approximately 0.30 pmol [signal-to-noise ratio (S/N) 3] and 1.0 pmol (S/N, 10) on column, respectively. Plasma KYN levels were successfully determined using 10 μL of rat plasma with satisfactory precision and accuracy. Intra- and inter-day precisions and accuracies were 1.7-6.8%, and −10 to 9.6%, respectively. KYN levels in plasma of male Sprague-Dawley rats (7 weeks old) were approximately 2.4 ± 0.32 μmol L−1 (n = 4). The proposed HPLC method was applied to determine KYN levels in the plasma of ketamine-treated rats—the animal model of schizophrenia.  相似文献   

11.
Stevia rebaudiana leaves contain non-cariogenic and non-caloric sweeteners (steviol-glycosides) whose consumption could exert beneficial effects on human health. Steviol-glycosides are considered safe; nonetheless, studies on animals highlighted adverse effects attributed to the aglycone steviol. The aim of the present study was to develop and validate two different ultra-high-performance liquid chromatography methods with electrospray ionization mass spectrometry (UHPLC-MS) to evaluate steviol-glycosides or steviol in Stevia leaves and commercial sweetener (Truvia®). Steviol-glycosides identity was preliminarily established by UV spectra comparison, molecular ion and product ions evaluation, while routine analyses were carried out in single ion reaction (SIR) monitoring their negative chloride adducts. Samples were sequentially extracted by methanol, cleaned-up by SPE cartridge and the analytes separated by UHPLC HSS C18 column (150 mm × 2.1 mm I.D., 1.8 μm). The use of CH2Cl2 added to the mobile phase as source of Cl enhance sensitivity. The LLOD for stevioside, rebaudioside A, steviolbioside and steviol was 15, 50, 10 and 1 ng ml−1, respectively. Assay validation demonstrated good performances in terms of accuracy (89–103%), precision (<4.3%), repeatability (<5.7%) and linearity (40–180 mg/g). Stevioside (5.8 ± 1.3%), rebaudioside A (1.8 ± 1.2%) and rebaudioside C (1.3 ± 1.4%) were the most abundant steviol-glycosides found in samples of Stevia (n = 10) from southern Italy. Rebaudioside A was the main steviol-glycosides found in Truvia® (0.84 ± 0.03%). The amounts of steviol-glycosides obtained by the UHPLC-MS method matched those given by the traditional LC-NH2-UV method. Steviol was found in all the leaves extract (2.7–13.2 mg kg−1) but was not detected in Truvia® (<1 μg kg−1). The proposed UHPLC-MS methods can be applied for the routine quality control of Stevia leaves and their commercial preparations.  相似文献   

12.
A new method based on enzymatic probe sonication extraction prior to high-performance liquid chromatography (HPLC) has been developed for the determination of 11 antibiotics (drugs) and the main metabolites of five of them in fish tissue and mussel samples. The analytes belong to four different classes of antibiotics (sulfonamides, tetracyclines, penicillins and amphenicols). The analysed compounds were sulfadiazine (SDI) and N4-acetylsulfadiazine (NDI) metabolite, sulfamethazine (SMZ) and N4-acetylsulfamethazine (NMZ), sulfamerazine (SMR) and N4-acetylsulfamerazine (NMR), sulfamethoxazole (SMX), trimetroprim (TMP), amoxicillin (AMX) and its main metabolite amoxicilloic acid (AMA), ampicillin (AMP) and its main metabolite ampicilloic acid (APA), chloramphenicol (CLF), thiamphenicol (TIF), oxytetracycline (OXT) and chlortetracycline (CLT).The main factors affecting the extraction efficiency (type of enzyme, type and volume of extractant, ultrasounds power and extraction time) were optimised in tissue of hake (Merluccius merluccius), anchovy (Engraulis encrasicolus), mussel (Mytilus sp.) and wedge sole (Solea solea). The extraction was carried out using an extraction time of 5 min with 5 mL of water and subsequent clean-up with dichloromethane.High-performance liquid chromatography (HPLC) with diode array (DAD) and fluorescence (FLD) detectors was used for the determination of the antibiotics. The separation of the analysed compounds was conducted by means of a Phenomenex® Gemini C18 (150 mm × 4.6 mm I.D., particle size 5 μm) analytical column with LiChroCART® LiChrospher® C18 (4 mm × 4 mm, particle size 5 μm) guard-column. Analysed drugs were determined using formic acid 0.1% (v/v) in water and acetonitrile in gradient elution mode as mobile phase. The proposed method was also evaluated by a laboratory assay consisting of the determination of the targeted analytes in samples of Cyprinus carpio which had previously administered the antibiotics.  相似文献   

13.
Twenty nine phenolic compounds comprising nine phenolic acids, sixteen flavonoids (including eight tea catechins, glycosides and aglycones), four coumarins plus caffeine were analysed within 20 min using ultra high performance liquid chromatography (UHPLC) with PDA detection. UHPLC system was equipped with C18 analytical column (100 mm × 2.1 mm, 1.7 μm), utilising 0.1% formic acid and methanol mobile phase in the gradient elution mode. The developed method was tested for the system suitability: resolution, asymmetry factor, peak capacity, retention time repeatability and peak area repeatability. The method was fully validated in the terms of linearity (r2 > 0.9990 for all 30 compounds), range (typically 1-100 mg L−1), LOD, LOQ, inter/intra-day precision (<3% and <9% respectively) and inter/intra-day accuracy (typically 100 ± 10%). Subsequently the method was applied to the identification (spectral information and peak purity calculations were profited) and quantification of phenolic compounds and caffeine present in tea infusions and extracts.  相似文献   

14.
Gupta VK  Jain R  Lukram O  Agarwal S  Dwivedi A 《Talanta》2011,83(3):709-716
A rapid and sensitive liquid chromatography tandem mass spectrometry method has been developed and validated for the simultaneous determination of ramipril, ramiprilat and telmisartan in human plasma. The solid-phase extraction technique was used for the extraction of ramipril, ramiprilat and telmisartan from human plasma. Trandolaprilat and hydrochlorothiazide were used as the internal standards (ISs). Chromatography was performed on a Hypurity C18, 5 μm, 50 mm × 4.6 mm column, with the mobile phase consisting of ammonium acetate and acetonitrile (in a 20:80 ratio), followed by detection using mass spectrometry. The method involves a simple reversed isocratic chromatography condition and mass spectrometry detection, which enables detection at sub-nanogram levels. The method was validated and the lower limit of quantification for ramipril, ramiprilat and telmisartan was found to be 0.1 ng mL−1, 0.1 ng mL−1 and 2 ng mL−1, respectively. The mean recovery for ramipril, ramiprilat and telmisartan ranged from 90.1 to 104.1%. This method increased the sensitivity and selectivity; resulting in high-throughput analysis of ramipril, ramiprilat and telmisartan using two different ISs in a single experiment for bioequivalence studies, with a chromatographic run time of 1.5 min only.  相似文献   

15.
Zhang Y  Zhang Z  Qi G  Sun Y  Wei Y  Ma H 《Analytica chimica acta》2007,582(2):229-234
The determination of indomethacin (INM) in pharmaceutical and biological samples by means of high-performance liquid chromatography (HPLC) with in situ electrogenerated Mn(III) chemiluminescence (CL) detection was proposed. The method was based on the direct CL reaction of INM and Mn(III), which was in situ electrogenerated by constant current electrolysis. The chromatographic separation was carried out on Nucleosil RP-C18 column (250 mm × 4.6 mm; i.d., 5 μm; pore size, 100 Å) at 20 °C. The mobile phase consisted of methanol:water:acetic acid = 67:33:0.1 solution. At a flow rate of 1.0 mL min−1, the total run time was 10 min. The effects of several parameters on the HPLC resolution and CL emission were studied systematically. Under the optimal conditions, a linear range from 0.01 to 10 μg mL−1(R2 = 0.9991), and a detection limit of 8 ng mL−1 (signal-to-noise ratio = 3) for INM were achieved. The relative standard deviations (R.S.D.) for 0.1 μg mL−1 INM were 2.2% within a day (n = 11) and 3.0% on 5 consecutive days (n = 6), respectively. The recovery of INM from urine samples was more than 92%. The applicability of the method for the analysis of pharmaceutical and biological samples was examined.  相似文献   

16.
Jin G  Zhang B  Tang Y  Zuo X  Wang S  Tang J 《Talanta》2011,84(3):644-650
A triazolam-imprinted silica microsphere was prepared by combining a surface molecular-imprinting technique with the sol-gel process. The results illustrate that the triazolam-imprinted silica microspheres provided using γ-aminopropyltriethoxysilane and phenyltrimethoxysilane as monomers exhibited higher selectivity than those provided from γ-aminopropyltriethoxysilane and methyltriethoxysilane. In addition, the optimum affinity occurred when the molar ratio of γ-aminopropyltriethoxysilane, phenyltrimethoxysilane, and the template molecule was 4.2:4.7:0.6. Retention factor (k) and imprinting factor (IF) of triazolam on the imprinted and non-imprinted silica microsphere columns were characterized using high performance liquid chromatography (HPLC) with different mobile phases including methanol, acetonitrile, and water solutions. The molecular selectivity of the imprinted silica microspheres was also evaluated for triazolam and its analogue compounds in various mobile phases. The better results indicated that k and IF of triazolam on the imprinted silica microsphere column were 2.1 and 35, respectively, when using methanol/water (1/1, v/v) as the mobile phase. Finally, the imprinted silica was applied as a sorbent in solid-phase extraction (SPE), to selectively extract triazolam and its metabolite, α-hydroxytriazolam, from human urine samples. The limits of detection (LOD) for triazolam and α-hydroxytriazolam in urine samples were 30 ± 0.21 ng mL−1 and 33 ± 0.26 ng mL−1, respectively.  相似文献   

17.
A high-performance liquid chromatographic method for the determination in human plasma of the recent noradrenergic and specific serotonergic antidepressant (NaSSA) mirtazapine and its two main metabolites, N-desmethylmirtazapine and 8-hydroxymirtazapine, has been developed. Fluorescence detection was used, exciting at λ = 290 nm and monitoring emission at λ = 370 nm. Separation was obtained by using a reversed-phase column (C8, 250 mm × 4.6 mm I.D., 5 μm) and a mobile phase composed of 75% aqueous phosphate buffer containing triethylamine at pH 3.0 and 25% acetonitrile. Melatonin was used as the internal standard. A careful pre-treatment of plasma samples was developed, using solid-phase extraction with phenyl cartridges (100 mg, 1 mL). The calibration curves were linear over a working range of 5-150 ng mL−1 for mirtazapine and of 2.5-75.0 ng mL−1 for N-desmethylmirtazapine and 8-hydroxymirtazapine. The limit of quantitation (LOQ) was 2.5 ng mL−1 and the limit of detection (LOD) was 1.25 ng mL−1 for all analytes. The method was applied with success to plasma samples from depressed patients undergoing treatment with mirtazapine. Precision data, as well as accuracy results, were satisfactory and no interference from other drugs was found. Hence the method is suitable for therapeutic drug monitoring of mirtazapine and its metabolites in depressed patients’ plasma.  相似文献   

18.
Scutellarin, a flavone glucuronide of 5,6,4′-trihydroxyflavone-7-O-glucoronide, is the main active component of the traditional Chinese botanic drug Erigeron breviscapus (Vant.) Hand.-Mazz. In this study, a method based on ultra performance liquid chromatography coupled with a time-of-flight mass spectrometer (UPLC/TOF MS) was established and validated to profile the metabolites of scutellarin in Sprague-Dawley rat urine following oral administration of single dose of scutellarin at 80.8 mg/kg. The column utilized was an Acquity BEH C18 (150 mm × 2.1 mm, 1.7 μm). The mobile phase was 0.2% formic acid and acetonitrile with gradient condition. Two standard curves of scutellarin were obtained for the concentration range of 1.065-10.65 μg/mL and 10.65-63.92 μg/mL, respectively. By automating the data processing of the software Masslynx developed by Waters Ltd., 17 metabolites of scutellarin were found and determined in rat urine, with the corresponding reactions in vivo such as isomerism, reduction, methylation, glucuronide conjugation, hydroxylation, hydroxylation and methylation, etc., most of which were discovered for the first time. For most metabolites, the time (Tp) of peak excretion was 8-12 h. Calculated as scutellarin, the cumulative urine excretion rate of the metabolites was 1.93%.  相似文献   

19.
Pulsed electrochemical detection (PED) following reversed-phase liquid chromatography (LC) has been applied recently to the detection of ethyl glucuronide (EtG) in the urine of live and deceased individuals. In this paper, several key improvements to the method are made to enhance sensitivity, reproducibility, and accuracy. These improvements include (i) further optimization of the sample preparation procedure that has increased the recovery from ca. 50% to 84 ± 3% in synthetic urine matrix; (ii) changing the internal standard from methyl glucuronide (MetG) to propyl glucuronide (ProG), which does not elute within the interference of the matrix; and (iii) altering the mobile phase of the separation from acetonitrile to t-butanol to virtually eliminate signal suppression in PED. As a consequence, detection limits have been reduced to 0.01 μg mL−1, reproducibility has been improved by a factor of two, and sample size has been reduced five-fold. Blind studies in synthetic urine showed no significant difference between the amount recovered and the true value determined at the 95% confidence level for all samples. Importantly, PED requires no derivatization, and it can detect virtually all glucuronides.  相似文献   

20.
Yoon KH  Lee SY  Jang M  Ko SH  Kim W  Park JS  Park I  Kim HJ 《Talanta》2005,66(4):831-836
A simple, fast and sensitive high-performance liquid chromatography (HPLC)-electrospray ionization (ESI) tandem mass spectrometric method (LC-MS/MS) has been developed for determination of propiverine and propiverine N-oxide metabolite in human plasma using oxybutynin as internal standard. Instead of extracting propiverine from plasma using organic solvents, which should be separated from the aqueous phase and evaporated before injecting the sample into the chromatograph, plasma sample containing propiverine and N-oxide was directly injected after precipitating proteins with acetonitrile. Numerous compounds in the plasma did not interfere with the highly specific multiple reaction monitoring in tandem mass spectrometric detection following C8 reversed-phase chromatographic separation under conditions that eluted propiverine, N-oxide and oxybutynin within 2 min (0.1% formic acid in water/acetonitrile, 25:75, v/v). The LC-MS/MS method and an alternative LC-MS method, using methyl-t-butyl ether extraction and selected ion monitoring, were validated over 1-250 ng ml−1 of propiverine and 2 to 500 ng ml−1 of N-oxide, and successfully applied in a pharmacokinetic study. The lower limit of quantitation was 1 ng ml−1 for propiverine and 2 ng ml−1 for N-oxide in both methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号