首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
There is an increasing awareness of out‐of‐school program value in enhancing student interest and understanding of science, technology, engineering, and mathematics (STEM). This study examined the impact of an out‐of‐school STEM education program on student attitudes toward STEM disciplines and STEM careers. A STEM education program implemented at a public research university was designed to integrate STEM disciplines with hands‐on problem‐based activities. Design features included authentic learning contexts, engineering design processes, and content integration. Data sources included an attitude survey and interviews conducted with forty sixth grade middle school student participants. The analysis revealed significant differences between pre and posttests on student attitudes toward personal and social implications of STEM, science and engineering learning, and their relationship to STEM. Findings showed that the program contributed to students’ developing interest in STEM fields, and helped them make connections between schoolwork and daily lives. Recommendations for future research on out‐of‐school STEM education programs were discussed.  相似文献   

2.
The purpose of this phenomenological study was to explore how science teachers who persisted in urban schools interpreted and responded to the unique features of urban educational contexts. With 17 alumni who taught in metropolitan areas across seven states, the Science Educators for Urban Schools (SEUS) program provided a research setting that offered a unique view of science teachers’ development of knowledge of urban education contexts. Data sources included narratives of teaching experiences from interviews and open‐ended survey items. Findings were interpreted in light of context knowledge for urban educational settings. Findings indicated that science teaching in urban contexts was impacted by the education policy context, notably through accountability policies that narrowed and marginalized science instruction; community context, evident in teacher efforts to make science more relevant to students; and school contexts, notability their ability to creatively adjust for resource deficiencies and continue their own professional growth. Participants utilized this context knowledge to transform student opportunities to learn science. The study suggests that future science education research and teacher preparation efforts would benefit from further attention to the unique elements of urban contexts, specifically the out of classroom contexts that shape science teaching and learning.  相似文献   

3.
This study focused on two middle schools in the central US who participated in collaborative, sustained, whole‐school professional development in implementing inquiry as part of National Science Education Standards, or standards‐based instructional practices. Participants were involved in their second year of the professional development experience. The research question explored was, “What barriers do science teachers encounter when implementing standards‐based instruction while participating in effective professional development experiences?” Qualitative data collected in the form of teacher interviews and classroom observations were utilized and were analyzed using a barrier to reform rubric. Findings indicate that even with effective professional development, science teachers still encounter technical, political, and cultural barriers to implementation. More support is required for professional development efforts to be successful, such as resources and time, as well as administrative buy‐in and support. Findings also revealed that even the best intended professional development efforts do not reveal and address existing beliefs for all teachers. Implications for future science education reform stakeholders are discussed.  相似文献   

4.
Within the field of science education, there remains little agreement as to the definition and characteristics of classroom inquiry. The emerging emphasis on scientific practices in science education reform discourse is underpinned by a need to better articulate the constituent elements of inquiry‐based science. While a small number of observation‐based instruments have been developed to characterize science learning environments, few are explicitly aligned with theoretical constructs articulated by the National Research Council and/or have been substantially field‐tested. We employ a newly developed instrument, the Practices of Science Observation Protocol (P‐SOP), to investigate essential features of inquiry and scientific practices in which early learners engage in elementary classrooms. This research is part of a multiyear professional development program designed to support elementary teachers (K‐5) in a large, urban school district to learn to better engage students in scientific practices. Project teachers video‐recorded enacted science lessons (n = 124) which were used as data. Findings illustrate both essential features of inquiry and scientific practices observed in elementary classrooms, as well as establish the P‐SOP as a valid and reliable observation protocol. These findings have important implications for the design of elementary science learning environments and associated research and development efforts in the field.  相似文献   

5.
In theory, STEM (interdisciplinary science, technology, engineering and mathematics) is cross‐disciplinary and situated in real‐world problem‐solving contexts. In practice, STEM disciplines are often implemented separately using contrived contexts. This paper examines theoretical and empirical aspects of Montessori middle school science in the United States, and its alignment with the conceptual framework of integrated STEM. We selected Montessori adolescent environments because the Montessori philosophy involves interdisciplinary application contextualized in purposeful work and learning. Our research sought to investigate how Montessori middle schools have designed their science programs, and to situate these findings within the current landscape of STEM education and reform‐based science. Based on the results of our survey of 96 U.S. Montessori middle schools, we argue Montessori offers an integrated educational approach that meaningfully situates academic disciplines to mirror local and global challenges, well supported by theory and literature on STEM and situated learning theories. We assert that integrated STEM happens organically in many Montessori middle schools, and takes place through authentic work in communities of practice. Our research communicates the value of looking outside traditional school settings to examine alternative formal education spaces, like Montessori classrooms where integrated STEM happens organically.  相似文献   

6.
Despite historical national efforts to improve elementary science education, science instruction continues to be marginalized, varying by state. This study was designed to address the ongoing challenge of educating elementary preservice teachers (PSTs) to teach science. Elementary PSTs are one of the science education community's major links to schools and science education reform. However, they often lack a strong background in science, knowledge of effective science teaching strategies, and consequently have low confidence and self‐efficacy. This investigation explored the initial learning of elementary PSTs using an interdisciplinary model of a scientific classroom discourse community during a science methods course. Findings post‐methods course suggested that the PSTs gained confidence in how to teach inquiry‐based elementary science and recognized inquiry‐based science as an effective means for engaging student learning. Additionally, PSTs embraced the interdisciplinary model as one that benefits students' learning and effectively uses limited time in a school day.  相似文献   

7.
Awardees of the National Science Foundation's Noyce Scholars funds are required to teach science in high‐need urban or rural school districts upon graduation. The purpose of this research was to analyze the reflective considerations that distinguish preservice Noyce Scholar science education majors committed to teaching in high‐need New York City (NYC) schools from those committed to high‐need rural careers. Essays designed to expose their (n = 22) considerations of teaching in NYC written before, immediately after, and two weeks following a one‐week cultural and science teaching internship experience were coded to reveal distinguishing reflective thought patterns. The results showed that those (16/22) whose final essay showed commitment to NYC teaching viewed themselves positively as NYC teachers and that increases in positive self‐perceptions were paralleled by increases in affinity toward living in NYC and NYC schools. Those not inclined to NYC teaching (6/22) expressed increasingly negative views of themselves as NYC teachers, NYC life, and urban education generally. The research provides insights into what Noyce Scholar undergraduates in science education think about when considering a teaching career in urban school districts.  相似文献   

8.
In water‐scarce regions of the world, water‐saving technology adoption augments farm productivity. But so does social capital. In this paper, the issue of ensuring livelihood for farmers through the combined use of social capital and water‐saving technology is modeled in the context of repeated droughts. The model presented here derives optimal resource conservation and accumulation strategies when the farmer must ensure minimum consumption during a set of repeated drought events in the future. Findings indicate that the path to drought resilience presents a complex trade‐off between accumulating one form of capital over another and is influenced by farmers’ wealth and water endowments, level of risk associated with the repeated droughts and the duration of the repeated drought event that the farmer plans to survive. A higher risk of repeated droughts leads to an increase in groundwater conservation efforts but delays technology adoption. Lower water endowments may also delay adoption and reduce social capital, however, a lower social capital or a slow rate of its growth is not a hindrance to adopting water‐saving technology earlier. Finally, social capital evolves to higher levels when farmer is simultaneously faced with a higher level of risks and a longer span of drought events.  相似文献   

9.
School STEM Culture—an aspect of culture within a school community—is defined as the beliefs, values, practices, and resources in STEM fields as perceived by students, parents, teachers, and administrators and counselors within a school. This study validates the STEM Culture Assessment Tool (STEM‐CAT), an instrument intended to advance the use of the School STEM Culture construct within the research community. Internal consistency was determined through the use of Cronbach's alpha and factor analyses, and the instrument was found to be a reliable measure of School STEM Culture. The instrument can be used in future research to quantify School STEM Culture to determine if interventions change the culture of a school to further STEM education.  相似文献   

10.
The purpose of this study was to develop, scale, and validate assessments in engineering, science, and mathematics with grade appropriate items that were sensitive to the curriculum developed by teachers. The use of item response theory to assess item functioning was a focus of the study. The work is part of a larger project focused on increasing student learning in science, technology, engineering, and mathematics (STEM)‐related areas in grades 4–8 through an engineering design‐based, integrated approach to STEM instruction and assessment. The fact that the assessments are available to school districts at no cost, and represent psychometrically sound instruments that are sensitive to STEM‐oriented curriculum, offers schools an important tool for gauging students' understanding of engineering, science, and mathematics concepts.  相似文献   

11.
Addressed is the current practice in educational reform of reducing time for science instruction in favor of traditional reading/language arts instruction. In contrast, presented is an evidence‐based rationale for increasing instructional time for K‐5 science instruction as an educational reform initiative. Overviewed are consensus interdisciplinary research and complementary multi‐year findings of the Science IDEAS model demonstrating the effectiveness of integrating conceptually‐relevant reading within science instruction in improving student achievement in both science and reading comprehension. Based on research summarized, increasing time for integrated K‐5 science is advocated as a meaningful reform‐based approach to science learning and reading comprehension proficiency that, in turn, better prepares students for subsequent success in science and content‐area reading comprehension across upper elementary and middle school grades (3–8).  相似文献   

12.
“Evaluation as a particular kind of investigated discipline is distinguished from, for example, traditional empirical research in the social sciences or from literary criticism, criminalistics, or investigative reporting, partly by its extraordinary multidisciplinarity” ( Scrivens, 1991 , p. 141). It is this unique multidisciplinary feature of evaluation that adds usefulness when determining the effectiveness of programs seeking to integrate mathematics and science teaching and learning across elementary and middle grade levels. In 2005, a K‐8 mathematics and science program celebrated its 15th year of service. The program was the result of education, business, and community partnership efforts focused on improving mathematics and science teaching and learning in schools throughout a metropolitan region in the southeastern United States. To date, over 350 K‐8 teachers have completed a master's degree through this mathematics and science education program. The director realized that an evaluation of the program would likely provide insights that would benefit not only the efforts of the program but the broader mathematics and science teaching and learning community. Hence, the National Science Foundation (award No. 9815931), which had provided start‐up funds for the program responded to this need and provided funding for a longitudinal evaluation of the program. The evaluation was conducted from 1999 to 2004. This article focuses on the evaluation results for years 1 and 2 and addresses the question related to changes in teachers' classroom practice.  相似文献   

13.
While participating in single‐ and mixed‐gender science and mathematics classes, ninth‐grade urban high school students' (n= 118) academic self‐concept, self‐efficacy, and school climate perceptions were examined. Their perceptions were measured quantitatively from the Fennema‐Sherman Mathematics (modified for Science) Attitude and the Patterns of Adaptive Learning scales. Five factors arose from each instrument: confidence/efficacy, utility, instruction, climate, and anxiety/performance avoidance. Comparative factor analysis of the science‐modified Fennema‐Sherman Scale showed similar constructs within the mathematics scale. Our findings are congruent with reports concerning single‐gender classrooms that find few significant differences in students' attitudes toward science and mathematics, or classroom climate, with regard to single‐gender classes. Lastly, our results supported three structural equation models for the hypothesized factors from each instrument.  相似文献   

14.
In recent years, national organizations, mathematics educators, and policy makers have called for the development of elementary school mathematics coaches to improve mathematics teaching and learning in elementary schools. The literacy field has found success and promise in the work of instructional coaches, and the mathematics education community can benefit from what professionals in literacy have learned and practiced. This article presents a synthesis of empirical research about instructional coaches, in both literacy and mathematics, as well as the neo‐Vygotskian construct of assisted performance. Following the synthesis, implications are presented regarding how to develop the essential skills and knowledge needed for elementary school mathematics coaches as well as how to examine the impact of their efforts in schools.  相似文献   

15.
The purpose of this study was to investigate the impact of a hands‐on science curriculum, which integrates mathematics and supports English language development, on third‐grade students' mathematics achievement—specifically the measurement subscale of the statewide assessment. The data drew from a larger five‐year research and development project consisting of reform‐based science curriculum units and teacher workshops designed to promote effective science instruction while integrating mathematics and supporting English language development. The third‐grade curriculum places a strong emphasis on measurement skills in the context of science inquiry. The third‐grade students' performance on the measurement subscale of the statewide mathematics assessment in the treatment schools was compared with that of comparison schools using a hierarchical linear model. Students at the treatment schools performed significantly higher than students at the comparison schools. The results provide evidence that an integrated approach to mathematics and science instruction can benefit diverse student groups.  相似文献   

16.
Increasingly, STEM focused high schools are used prepare students for college STEM majors and launch them into STEM careers. Yet a new focus on STEM education at the elementary levels suggests that the importance of STEM education is much broader than a preparation for workforce needs in high school or college. This paper describes a case study designed to articulate the mission and design of an effective and nationally recognized STEM‐focused elementary school. As described through the six most impactful components of STEM‐focused elementary school design at Walter Bracken STEAM Academy, the case study emphasizes the school's strong and inclusive school leadership, with staff organized into grade level groups empowered to innovate and honing their teaching practices. External partnerships are leveraged to broaden student learning opportunities. Students at Bracken engage in active learning opportunities and multidisciplinary lessons where STEM is used as a way of thinking and as a way to coherently combine content into active learning opportunities that are engaging for learners. By organizing the structural components of an exemplary STEM‐focused elementary school, we hope to deliver actionable reforms for elementary schools wanting to increase their STEM‐focused offerings.  相似文献   

17.
18.
Preservice teachers (PSTs) participated in Family Science Learning Events (FSLEs) at a university designated as a Hispanic Serving Institution. PSTs were required by the instructor to conceive and design culturally relevant science activities as well as implement these activities with K‐8 students and their families during three separate FSLEs each semester. After school venues included elementary and middle schools located in ethnically diverse school districts. Data collected from these future teachers included qualitative PST reflections, lesson plans, project board/activity evaluation by peers, and a quantitative survey instrument (modified SEBEST) to assess PSTs perceptions of teaching diverse learners. Results suggest that using FSLEs as an integral component of teacher preparation can be a powerful facilitator of learning for all involved, increasing excitement for learning, confidence in using culturally relevant activities and valuable experience in working with family members, particularly Hispanics. In addition, using culturally relevant science activities deepened content knowledge and gave PSTs the opportunity to use culturally responsive activities with Hispanic students and their families, increasing feelings of self‐efficacy in science teaching with diverse learners.  相似文献   

19.
This study focused on intensive work within a large, urban, low‐performing middle school in the southwest to address and transform teacher beliefs regarding the role of culture within their science pedagogy. Given the recent, rapid growth of numbers of students from Hispanic/Latino(a) backgrounds in the United States, it is critical that a paradigm shift takes place within schools and existing beliefs of science teachers to address the needs of a much changed classroom. This study details the journey of middle‐school teachers who were provided support and experiences targeted at addressing their existing beliefs regarding the role of culture and the growth and change that were achieved through a science education reform effort. Implications for further research will be discussed, including the need for attention to beliefs regarding culture are shared.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号