首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Femtosecond transient absorption spectroscopy was used to study singlet diphenylcarbene generated by photodissociation of diphenyldiazomethane with a UV pulse at 266 nm. Absorption by singlet diphenylcarbene was detected and characterized for the first time. Similar band shapes were observed in acetonitrile and in cyclohexane with lambda(max) approximately 370 nm. The singlet absorption decays by intersystem crossing to triplet diphenylcarbene at rates that agree with previous measurements. The singlet absorption band is completely formed 1 ps after the pump pulse. It is preceded by a strong and broad absorption band, which is tentatively assigned to excited-state absorption by a singlet diazo excited state. In neat alcohol solvents the growth and decay of the diphenylmethyl cation was observed. This species is formed by proton transfer from an alcohol molecule to singlet diphenylcarbene. Since a shell of solvent molecules surrounds each nascent carbene, the intrinsic rate of protonation in the absence of diffusion could be measured. In methanol, proton transfer occurs with a time constant of 9.0 ps, making this the fastest known intermolecular proton-transfer reaction to carbon. In O-deuterated methanol proton transfer occurs in 15.0 ps. Slower rates were observed in the longer alcohols. The protonation times correlate reasonably well with solvation times in these alcohols, suggesting that solvent fluctuations are the rate-limiting step. In all alcohols studied, the carbocations decay on a somewhat slower time scale to yield diphenylalkyl ethers. In methanol and ethanol the rate of decay is determined by reaction with neutral solvent nucleophiles. There is evidence in 2-propanol that geminate reaction within the initial ion pair is faster than reaction with solvent. No isotope effect was observed for the reaction of the diphenylmethyl carbocation in methanol. Using comparative actinometry the quantum yield of protonation was measured. In methanol, the quantum yield of carbocations reaches a maximum value of 0.18 approximately 18 ps after the pump pulse. According to our analysis, 30% of the photoexcited diazo precursor molecules are eventually protonated. Somewhat lower protonation efficiencies are observed in the other alcohols. Because the primary quantum yield for formation of singlet diphenylcarbene is still unknown, the importance of reaction channels that might exist in addition to protonation cannot be determined at present. Singlet carbenes are powerful, photogenerated bases that open new possibilities for fundamental studies of proton transfer in solution.  相似文献   

2.
Evidence of a one-electron transfer process in a carbene reaction has been observed for the first time. The example is the quenching of the photoexcited triplet state of diphenylcarbene (3*DPC) by electron donors. Measurement of the fluorescence lifetime as a function of donor concentration yielded the bimolecular rate constant, 3*k. An explanation is offered as to why 3* and 1DPC react efficiently with amines as well as alcohols, whereas the ground triplet, 3DPC, does not.  相似文献   

3.
The pharmaceutically active compound atenolol, a kind of $\beta$-blockers, may result in adverse effects both for human health and ecosystems if it is excreted to the surface water resources. To effectively remove atenolol in the environment, both direct and indirect photodegradation, driven by sunlight play an important role. Among indirect photodegradation, singlet oxygen (1O2), as a pivotal reactive species, is likely to determine the fates of atenolol. Nevertheless, the kinetic information on the reaction of atenolol with singlet oxygen has not been well investigated and the reaction rate constant is still ambiguous. Herein, the reaction rate constant of atenolol with singlet oxygen is investigated directly through observing the decay of the 1O2 phosphorescence at 1270 nm. It is determined that the reaction rate constant between atenolol and 1O2 is 7.0×105 (mol/L)$^{-1}\cdot$s-1 in D2O, 8.0×106 (mol/L)$^{-1}\cdot$s-1 in acetonitrile, and 8.4×105 (mol/L)$^{-1}\cdot$s-1 in EtOH, respectively. Furthermore, the solvent effects on the title reaction were also investigated. It is revealed that the solvents with strong polarity and weak hydrogen donating ability are suitable to achieve high rate constant values. These kinetics information on the reaction of atenolol with singlet oxygen may provide fundamental knowledge to the indirect photodegradation of $\beta$-blockers.  相似文献   

4.
Effects of solvent, pH and hydrogen bonding with N‐methylimidazole (MIm) on the photophysical properties of 1‐hydroxyfluorenone (1HOF) have been studied. Fluorescence lifetime, fluorescence quantum yield and triplet yield measurements demonstrated that intersystem crossing was the dominant process in apolar media and its rate constant significantly diminished with increasing solvent polarity. The acceleration of internal conversion in alcohols paralleled the strength of intermolecular hydrogen bonding. The faster energy dissipation from the singlet‐excited state in cyclohexane was attributed to intramolecular hydrogen bonding. The pKa of 1HOF decreased from 10.06 to 5.0 on light absorption, and H3O+ quenched the singletexcited molecules in a practically diffusion‐controlled reaction. On addition of MIm in toluene, dual fluorescence was observed, which was attributed to reversible formation of excited hydrogen‐bonded ion pair. Rate constants for the various deactivation pathways were derived from the combined analysis of the steady‐state and the time‐resolved fluorescence results.  相似文献   

5.
Heptamethine cyanines are important near-IR fluorophores used in many fluorescence applications. Despite this utility, these molecules are susceptible to light-promoted reactions (photobleaching) involving photochemically generated reactive oxygen species (ROS). Here, we have sought to define key chemical aspects of this nearly inescapable process. Near-IR photolysis of a model heptamethine cyanine leads to the regioselective oxidative cleavage of the characteristic polyene. We report the first quantitative analysis of the major reaction pathway following either photolysis or exposure to candidate ROS. These studies clearly indicate that only singlet oxygen (1O2), and not other feasible ROS, recapitulates the direct photolysis pathway. Computational studies were employed to investigate the regioselectivity of the oxidative cleavage process, and the theoretical ratio is comparable to observed experimental values. These results provide a more complete picture of heptamethine cyanine photooxidation, and provide insight for the design of improved compounds for future applications.  相似文献   

6.
A combination of picosecond and nanosecond laser spectroscopy measurements, chemical quenching experiments and triplet sensitization experiments has allowed the determination of the rapid singlet to triplet and slower triplet to singlet intersystem crossing rates for diphenylmethylene in fluid solution at room temperature. It is shown that under the conditions of the kinetic measurements, singlet and triplet diphenylmethylene (1DPM and 3DPM, respectively) are in rapid equilibrium relative to reactions, so that knowledge of the values of kST and kTS allows determination of the equilibrium constant and change in free energy for the 1DPM 〈 3DPM process. The absolute reactivity of 1DPM toward a series of alcohols has been determined and is discussed in terms of other current investigations of carbene reactivity.  相似文献   

7.
Thiobase derivatives have received important investigations due to their wide usage as phototherapeutic agents and their potential carcinogenic side effects as immunosuppressants. The substitution of oxygen atom by the sulfur atom makes the ultraviolet absorption of thiobases redshifted and absorbs UVA light (>300 nm), resulting in unusual high quantum yield of triplet state to generate the singlet oxygen (1O2) through photosensitization. As a type of reactive oxygen species, 1O2 is highly reactive toward thiobases. Herein, we report the measurements of reaction rate constants between di erent thiobases and 1O2 in different solvents through the direct detection of 1O2 luminescence decay kinetics at 1270 nm. The rate constants of thiouracils with 1O2 are five times smaller than that of thioguanine with 1O2, which suggests that thiopurines are more reactive than thiopyrimidines and thus less suitable to be a photosensitive drug on the application of photodynamic therapy. Additionally, the rate constants of thiobases and 1O2 were found to be obviously influenced by the solvent polarity. With the increase of solvent polarity, the rate constants of thiobases and 1O2 decrease.  相似文献   

8.
Singlet oxygen, a harmful reactive oxygen species, can be quantified with the substance 2,2,6,6‐tetramethylpiperidine (TEMP) that reacts with singlet oxygen, forming a stable nitroxyl radical (TEMPO). TEMPO has earlier been quantified with electron paramagnetic resonance (EPR) spectroscopy. In this study, we designed an ultra–high‐performance liquid chromatographic—tandem mass spectrometric (UHPLC‐ESI‐MS/MS) quantification method for TEMPO and showed that the method based on multiple reaction monitoring (MRM) can be used for the measurements of singlet oxygen from both nonbiological and biological samples. Results obtained with both UHPLC‐ESI‐MS/MS and EPR methods suggest that plant thylakoid membranes produce 3.7 × 10?7 molecules of singlet oxygen per chlorophyll molecule in a second when illuminated with the photosynthetic photon flux density of 2000 μmol m?2 s?1.  相似文献   

9.
The spectroscopic, kinetic, and equilibrium properties of isoindolo[2,1-a]indol-6-one (I) were studied in n-hexane in the presence and absence of alcohols (X). Hydrogen-bonded-complex formation was found to occur between the alcohol and the ground state as well as the excited state of the I molecule. The spectra of I and its singly complexed derivative (IX) are similar; however, that of IX is red shifted. The extent of red shift increases with the hydrogen-bonding ability of the alcohol. Equilibrium constant measurements were made to determine the hydrogen-bond basicity (beta(2)(H)) for I and the singlet excited (1)I. The beta(2)(H) value for (1)I is found to be about twice that of the ground-state I. Time-resolved fluorescence decay measurements indicate that the reaction of singlet excited I with fluorinated alcohols is diffusion controlled, while the rate of complexation with nonfluorinated (weaker hydrogen bonding) aliphatic alcohols depends on the Gibbs energy change in the complexation reaction. The quantitative correlation between the rate coefficient of complexation of (1)I with alcohols and the Gibbs energy change in the complexation process allowed us to estimate the rate coefficient for the complexation of the ground-state I with alcohols. The formation of the singlet excited hydrogen-bonded complex is irreversible; (1)IX disappears in a first order and an alcohol induced second order reaction. The first order decay is predominantly due to internal conversion to the ground state, the rate of which depends on the ionization energy of the complexing alcohol.  相似文献   

10.
Photolysis of solutions of 3-tert-butyl-3-methyl-1-butyne in CD3OD and C6D12 was studied by means of 1HNMR spectroscopy, chemical nuclear polarization of the reaction products in the range 213- 333 K, and kinetic measurements. It is shown that 3-tert-butyl-3-methyl-1-butyne decomposes primarily from a singlet electronic state. A scheme is proposed of the most probable reactions involving the radicals formed and solvent molecules. It is found that secondary processes play an important role in the initiation of the chemical nuclear polarization and the photolysis mechanism.  相似文献   

11.
Time‐resolved transient absorption and fluorescence spectroscopy with nano‐ and femtosecond time resolution were used to investigate the deactivation pathways of the excited states of distyrylfuran, thiophene and pyridine derivatives in several organic solvents of different polarity in detail. The rate constant of the main decay processes (fluorescence, singlet–triplet intersystem crossing, isomerisation and internal conversion) are strongly affected by the nature [locally excited (LE) or charge transfer (CT)] and selective position of the lowest excited singlet states. In particular, the heteroaromatic central ring significantly enhances the intramolecular charge‐transfer process, which is operative even in a non‐polar solvent. Both the thiophene and pyridine moieties enhance the S1→T1 rate with respect to the furan one. This is due to the heavy‐atom effect (thiophene compounds) and to the 1(π,π)*→3(n,π)* transition (pyridine compounds), which enhance the spin‐orbit coupling. Moreover, the solvent polarity also plays a significant role in the photophysical properties of these push–pull compounds: in fact, a particularly fast 1LE*→1CT* process was found for dimethylamino derivatives in the most polar solvents (time constant, τ≤400 fs), while it takes place in tens of picoseconds in non‐polar solvents. It was also shown that the CT character of the lowest excited singlet state decreased by replacing the dimethylamino side group with a methoxy one. The latter causes a decrease in the emissive decay and an enhancement of triplet‐state formation. The photoisomerisation mechanism (singlet/triplet) is also discussed.  相似文献   

12.
The quantum chemical simulation of the ground and electron-excited states of diverse complexes of fluorescent probe 4-dimethylaminochalcone (DMAC) and water in vacuo was performed by the HF/MP2 and RI-CC2 methods. Molecules of the DMAC probe and water can form five types of stable complexes. The geometries corresponding to the potential energy minimum and dipole moments for two lowest singlet and one lowest triplet states were calculated for each type of the complexes. The partial charges on the DMAC atoms and their changes due to the intramolecular charge transfer upon photoexcitation were determined. The coordination of the water molecule at the carbonyl group of DMAC is preferable in vacuo. The formation of hydrogen bonds between the carbonyl group of DMAC and water molecules decreases the energy of the excited state of the complex 1(π, π*), due to which the fluorescence yield increases upon photoexcitation. The calculation results are confirmed by the experimental data on studying the fluorescence of the probe in binary mixtures of benzene and alcohols.  相似文献   

13.
The kinetics of oxidation of sarcosine by diperiodatocuprate(III) (DPC) was studied with spectrophotometry in a temperature range of 292.2–304.2 K. The reaction between diperiodatocuprate(III) and sarcosine in alkaline medium exhibits 1:1 stoichiometry (DPC:sarcosine). The reaction was found to be first order with respect to both DPC and sarcosine. The observed rate constant (kobs) decreased with the increase of the [IO?4], decreased with the increase of the [OH?], and then increased with the increase of the [OH?] after a turning point. There was no salt effect, and free radicals were detected. Based on the experimental results, a mechanism involving the diperiodatocuprate(III) (DPC) as the reactive species of the oxidant has been proposed. The activation parameters, as well as the rate constants of the rate‐determining step, have been calculated.  相似文献   

14.
Molecular electronic spectroscopy featuring intramolecular proton transfer and twisted intramolecular charge transfer poses a whole new range of problems for computational quantum chemistry. The development of the four-level laser based on the intramolecular proton-transfer focuses on the subtleties of the interaction of the singlet and triplet electronic state manifolds of the two different tautomeric species. Examples are given of the sensitive variation of proton-transfer fluorescence with chemical substitution. A competing excitation channel is shown to exist when internal molecular torsion couples with sudden polarization to yield a twisted intramolecular charge transfer configuration. In such systems, three competing fluorescences can be observed. Several electronic puzzles will be presented that can provide fertile territory for quantum chemical computations. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Halogen bonding has recently become an effective tool to control the spin state of reactive carbenes. In this work, a series of the complexes of diphenylcarbene (DPC) that has a triplet ground state with several halogen bond donors RX were theoretically studied, and in particular, the influence of the formation of halogen bonding on the spin state of DPC was extensively explored. The spin flip depends on the difference of halogen bond energies between triplet and singlet, that is, when the difference is large enough a spin flip may occur. Furthermore, the variations of the geometries on complexation may induce the potential energy surfaces of different spin states to intersect, thus leading to intersystem crossing. Based on the energy analysis of the minimum energy crossing points (MECPs), the systems with a smaller MECP‐triplet energy barrier go through intersystem crossing more easily. Halogen bonds in the complexes, where a spin flip takes place, exhibit a partially covalent character, while other complexes show conventional behaviors of halogen bonding. According to charge decomposition analysis, the charge transfer from HOMO (DPC) to LUMO (RX) is identified as a prominent stabilizing interaction in the whole complexes.  相似文献   

16.
The details of the picosecond kinetic investigation of diphenylcarbene (Ph2C:) protonation with H2O, MeOH, EtOH and 2-propanol by optical absorption technique are presented. The protonation reactions were monitored by detection of the diphenylcarbenium ion (Ph2C+H). Evidence of solvent induced alteration of the singlet-triplet energy level of Ph2C:, and involvement of an excited carbene singlet state in the protonation of Ph2C: diphenylcarbene with H2O are presented.  相似文献   

17.
18.
The decay of prompt fluorescence in crystalline naphthalene at 300 K, excited by a picosecond 266 nm pulse, has been studied as a function of excitation intensity. Experimental decay curves can be fitted only when the exponential distribution in depth of excitation and the radial (gaussian) intensity profile of the excitation are both taken into account. From an analysis of the decay at early time (?5 ns) a best fit value of the singlet—singlet annihilation rate constant is found γSS = (4 ± 1) × 10?10 cm3 s?1. If the reaction is diffusion-limited, this rate implies an average singlet diffusivity DS = (2 ± 1) × 10?4 cm2 s?1.  相似文献   

19.
The fluorescence decay times (τ-F) for conversion (by intramolecular electron transfer) of the S1,np state into the S1,ct state of 6-(4-methylphenyl) amino-2-naphthalenesulfon-N,N-dimethylamide (TNSDMA) correlate well with the constant-charge dielectric relaxation times [τ1v = (ε00s) τ1] in linear alcohols. Solvent motion thus controls certain intramolecular electron transfers.  相似文献   

20.
Singlet and triplet low-lying states of the 4-dimethylaminobenzonitrile and its derivatives have been studied by the density functional theory and ab initio methodologies. Calculations reveal that the existence of the methyl groups in the phenyl ring and the amino twisting significantly modify properties of their excited states. A twisted singlet intramolecular charge-transfer state can be accessed through decay of the second planar singlet excited state with charge-transfer character along the amino twisting coordinate or by an intramolecular charge-transfer reaction involved with a locally first excited singlet state. Plausible charge-transfer triplet states and intersystem crossing processes among singlet and triplet states have been explored by spin-orbit coupling calculations. The intersystem crossing process was predicted to be the dominant deactivation channel of the photoexcited 4-dimethylaminobenzonitrile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号