首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
p-Biphenylyldiazomethane was excited by femtosecond pulses of UV light in acetonitrile, in cyclohexane, and in methanol. Ultrafast photolysis produces a singlet excited state of p-biphenylyldiazomethane with lambdamax = 490 nm, and lifetimes of less than 300 fs in acetonitrile, in cyclohexane, and in methanol. The decay of the excited state is accompanied by the growth of transient absorption with lambdamax = 360 nm. The carrier of this transient absorption is attributed to singlet p-biphenylylcarbene, a result that is consistent with the predictions of TD-DFT calculations. The singlet carbene lifetimes are 200 and 77 ps in acetonitrile and cyclohexane, respectively, and are controlled by intersystem crossing to the lower energy triplet state. The transient absorption does not decay to baseline in acetonitrile, because of the formation of nitrile ylide. The equilibrium mixture of singlet and triplet p-biphenylylcarbene reacts with acetonitrile to form a nitrile ylide (lambdamax = 370 nm), and with cyclohexane by C-H insertion 1-20 ns after the laser pulse. The singlet carbene lifetime is only 7.9 ps in methanol, owing to a rapid reaction with the solvent. Reaction with the solvent gives rise, in part, to a p-biphenylylbenzyl cation (lambdamax = 450 nm, tau = 6.3 ps) in methanol.  相似文献   

2.
The primayy step of the o-nitrobenzaldehyde-o-nitrosobenzoic acid photorearrangement in solution has been studied by flash absorption with 35 ps 355 nm light pulses. Flash photolysis of o-nitrobenzaldehyde in acetonitrile or THF solutions produces a transient absorption with a maximum at ca. 440 nm. Formation of the transient was < 35 ps, the laser pulse width, and within experimental error, no furthrr buildup was observed. The transient which decayed at nanosccond times is attributed to a remarkably reactive ketene intermediate formed by H abstraction of the aldehydic hydrogen by the excited state of the nitro group. Decay of the ketene was more rapid in water-acetonitrile, methanol-acetonitrile, tert-butyl alcohol and in THF than in acetonitrile solution. It is suggested that the intramolecular reaction of the ketene intermediate is enhanced in THF relative to acetonitrile because of the ability of THF to faciliaate proton transfer associated with the reaction. The addition of the triplet quencher cis-piperylene to a solution of o-nitrobenzaldehyde in THF did not accelerate decay of the transient nor reduce its yield. The n,π* triplet excited state band observed in the 625–650 nm region for a number of the nitroaromatic compounds was not observed in the case of o-nitrobenzaldehyde. The results provide evidence that in the direct irradiation on o-nitrobenzaldehyde in THF or acetonitrile solutions, the intramolecular reaction occurs from the singlet rather than the triplet excited state.  相似文献   

3.
Ultrafast photolysis (lambda(ex) = 308 nm) of p-biphenylyltrifluoromethyl diazomethane (BpCN2CF3) releases singlet p-biphenylyltrifluoromethylcarbene (BpCCF3) which absorbs strongly at 385 nm in cyclohexane, immediately after the 300 fs laser pulse. The initial absorption maximum shifts to longer wavelengths in coordinating solvents (nitrile, ether, and alcohol). In low viscosity coordinating solvents, the initial absorption maximum further red shifts between 2 and 10 ps after the laser pulse. Similar effects are observed upon ultrafast photolysis of 2-fluorenyltrifluoromethyl diazomethane (FlCN2CF3) and therefore cannot be associated with torsional motion around the two phenyl rings of the biphenyl compound. Instead, the effect is attributed to the dynamics of solvation of the singlet carbene. The time constant of solvation in normal alcohols lengthens with solvent viscosity in a linear manner. Furthermore, the time constants of the red shift in methanol-O-d (16 ps), ethanol-O-d (26 ps), 2-propanol-OD (40 ps), and 2,2,2-trifluoroethanol-O-d (14 ps) are longer than those recorded in methanol (9.6 ps, KIE = 1.7), ethanol (14.3 ps, KIE = 1.8), 2-propanol (28 ps, KIE = 1.4), and 2,2,2-trifluoroethanol (4.4 ps, KIE = 3.2), which indicates that the solvent reorganization involves formation of hydrogen bonds. The kinetic data are consistent with motion of the solvent to achieve a specific interaction with the carbene, with the creation of a new hydrogen bond. The solvated carbene reacts with the solvent over tens, hundreds, and thousands of ps, depending upon the solvent.  相似文献   

4.
Picosecond laser induced fluorescence measurements provide for the first time the direct measurement of the intramolecular and intermolecular energy decay dynamics of singlet diphenylcarbene (1 DPC) in the presence of reactive molecules. As exemplified by the reaction of 1DPC with alcohols it is found that reactive molecules provide 1DPC with not only a chemical decay channel but also an intramolecular decay channel which is due to a solvent polarity effect. These chemical and physical effects can act in opposite directions leading to novel results such as a significant increase in the singlet state lifetime upon addition of reacting molecules. The absolute reaction rate constants of 1DPC with alcohols, in different solvents, obtained by direct measurements are also reported.  相似文献   

5.
The photochemistry of two simple acyclic diazo carbonyl compounds, azibenzil and diazoacetone, were studied using the tools of ultrafast time-resolved spectroscopy. In the former case, UV-vis detection allows observation of an absorption band of singlet benzoylphenylcarbene, decaying with a 740 ± 150 ps time-constant in acetonitrile. IR detection shows that the ketene product of Wolff rearrangement (~2100 cm(-1)) is formed by two parallel pathways: a stepwise mechanism with carbene intermediacy with a slow rise time-constant of 660 ± 100 ps, and directly in the diazo excited state as confirmed by the immediate formation of an IR band of a nascent hot ketene species. Photolysis (270 nm) of diazoacetone in chloroform leads mainly to the ketene species through a concerted process, consistent with the predominance of the syn conformation in the diazoacetone electronic ground state and a zero quantum yield of the internal conversion process.  相似文献   

6.
Photobleaching and absorption recovery of the fundamental state of pinacyanol have been investigated in different solvents, using a single picosecond pulse. In a viscous solvent, glycerol, the recovery time constant is τ = (330 ± 30) ps which may be compared with the fluorescence lifetime τ = (302 ± 29) ps, as measured using a steak camera. In the lighter alcohols, methanol or isopropanol, the shorter recovery time constant τ < 10 ps indicates a very efficient non-radiative process, internal conversion between the two singlet states involved.  相似文献   

7.
The details of the picosecond kinetic investigation of diphenylcarbene (Ph2C:) protonation with H2O, MeOH, EtOH and 2-propanol by optical absorption technique are presented. The protonation reactions were monitored by detection of the diphenylcarbenium ion (Ph2C+H). Evidence of solvent induced alteration of the singlet-triplet energy level of Ph2C:, and involvement of an excited carbene singlet state in the protonation of Ph2C: diphenylcarbene with H2O are presented.  相似文献   

8.
A comprehensive study of acridine spectra with variation of pH, wave length of excitation, deuteration of the solvent, etc., has been made. The excited state protonation of acridine is found extra-ordinarily excitation wavelength sensitive near the red edge of the first absorption band. The proton association takes place very fast (K PT ~ 1010 sec-1) on excitation at the red edge of the first absorption band (ree) and acridinium emission is observed while it is slow on short wavelength excitation (swe). The reaction rate slows down at lower temperature which is indicated by a delay in the initiation of the effect by ~ 8 nm on ree. The acridinium type emission with ree at 80 K shows that proton tunnelling is the chief mechanism of proton transfer. The quantum yields are also found wavelength dependent. Contrary to previous observations acridinium ion also shows a ree shift at 80 K.  相似文献   

9.
Ultrafast photolysis of p-biphenylyldiazoethane (BDE) produces an excited state of the diazo compound in acetonitrile, cyclohexane, and methanol with lambdamax = 490 nm and lifetimes of less than 300 fs. The decay of the diazo excited state correlates with the growth of singlet carbene absorption at 360 nm. The optical yields of diazo excited states produced by photolysis of p-biphenylyldiazomethane (BDM) and BDE are the same; however, the optical yield of singlet p-biphenylylmethylcarbene (1BpCMe) is 30-40% less than that of p-biphenylylcarbene (1BpCH) in all three solvents. The results are explained by rearrangement in the excited state (RIES) of BDE to form p-vinylbiphenyl (VB) in parallel with extrusion of nitrogen to form 1BpCMe in reduced yield. This interpretation is consistent with product studies (ethanol-OD in cyclohexane) which indicate that there is an approximately 25% yield of VB that is formed by a mechanism that bypasses the relaxed singlet carbene. The decay of 1BpCMe is biexponential, and that of 1BpCH is monoexponential. This is attributed either to efficient relaxation of vibrationally excited 1BpCMe by 1,2 migration of hydrogen to form VB (minor) or to the increased number of low-frequency vibrational modes provided by the methyl group (major). A methyl group retards the rate of intersystem crossing (ISC), relative to a hydrogen atom, and ISC is more rapid in nonpolar solvents. Reaction of 1BpCMe with methanol is much faster than spin equilibration. Both the lifetime of 1BpCMe and 1BpCH are the same in cyclohexane and in cyclohexane-d12. This demonstrates that spin equilibration is faster than reaction of either carbene with the solvent. The lifetimes of 1BpCMe and 1BpCMe-d3 are the same in cyclohexane. This indicates that 1,2 hydrogen migration of 1BpCMe to form VB is slower than spin equilibration in cyclohexane. In acetonitrile, however, the lifetime of 1BpCMe-d3 is 1.5 times longer than that of 1BpCMe in the same solvent. Thus, in acetonitrile, where ISC is slow, the rate of 1,2 hydrogen shift of 1BpCMe is competitive with ISC. In cyclohexene, the lifetime of 1BpCH is shortened relative to that in cyclohexane. The lifetime of 1BpCMe is the same in cyclohexene and cyclohexane. The data indicate that spin relaxation is slow relative to reaction of 1BpCH with neat alkene but that spin relaxation is fast for 1BpCMe relative to reaction with neat cyclohexene.  相似文献   

10.
The photolysis of 2,2,4,6-tetramethyl-1,2-dihydroquinoline in binary MeOH-C5H12 and MeOH-MeCN mixtures was studied in dependence on the solvent composition by steady state and pulse photolysis. The photoinduced proton transfer from the N-H bond to the C(3) carbon atom of the heterocycle does not occur up to the methanol concentration of 0.25 (1 vol %) and 2.5 mol l−1 (10 vol %) in the MeOH-C5H12 and MeOH-MeCN mixtures, respectively. The trends in the increase in the relative quantum yield of the proton transfer reaction (Q mix/Q MeOH) and the decay rate constant for 2,2,4,6-tetramethyl-2,3-dihydroquinoline, the product of the proton transfer reaction, in dependence on the composition differ significantly for these binary mixtures. The results are interpreted in terms of peculiarities in the aggregation of methanol and the distribution of the DHQ molecules and transient species in the mixtures.  相似文献   

11.
The photosensitized oxidation of vitamin B6, pyridoxine, is investigated by product and kinetic analysis. Singlet oxygen quenching rates, measured by time-resolved laser flash generation of singlet oxygen followed by monitoring singlet oxygen phosphorescence decay, confirm previous observations that pyridoxine is a moderate quencher. The quenching rate for 3-methoxypyridine is 100 times slower than that for 3-hydroxypyridine, indicating the hydroxy moiety is required for efficient quenching. The chemical quenching rate constant, kr, was estimated by comparison with a known singlet oxygen reaction. Results indicate that the chemical quenching rate of pyridoxine dominates the total quenching. The major reaction product in methanol was isolated and characterized by NMR and MS. The data are consistent with a solvent adduct of the substituted 2,5-pyridinedione. At low temperature, two semistable intermediates were characterized by NMR. The data are consistent with a hydroperoxide and endoperoxide. These intermediates suggest initial attack of singlet oxygen para to the hydroxy group followed by either proton transfer to form the hydroperoxide or addition of the peroxide to the imine to form the endoperoxide. In the presence of protic solvents, the solvent adducts to the imine and elimination of water yield the observed 2,5-pyridinedione product.  相似文献   

12.
The excited-state dynamics of protochlorophyllide a, a porphyrin-like compound and, as substrate of the NADPH/protochlorophyllide oxidoreductase, a precursor of chlorophyll biosynthesis, is studied by femtosecond absorption spectroscopy in a variety of solvents, which were chosen to mimic different environmental conditions in the oxidoreductase complex. In the polar solvents methanol and acetonitrile, the excited-state dynamics differs significantly from that in the nonpolar solvent cyclohexane. In methanol and acetonitrile, the relaxation dynamics is multiexponential with three distinguishable time scales of 4.0-4.5 ps for vibrational relaxation and vibrational energy redistribution of the initially excited S1 state, 22-27 ps for the formation of an intermediate state, most likely with a charge transfer character, and 200 ps for the decay of this intermediate state back to the ground state. In the nonpolar solvent cyclohexane, only the 4.5 ps relaxational process can be observed, whereas the intermediate intramolecular charge transfer state is not populated any longer. In addition to polarity, solvent viscosity also affects the excited-state processes. Upon increasing the viscosity by adding up to 60% glycerol to a methanolic solution, a deceleration of the 4 and 22 ps decay rates from the values in pure methanol is found. Apparently not only vibrational cooling of the S1 excited state is slowed in the more viscous surrounding, but the formation rate of the intramolecular charge transfer state is also reduced, suggesting that nuclear motions along a reaction coordinate are involved in the charge transfer. The results of the present study further specify the model of the excited-state dynamics in protochlorophyllide a as recently suggested (Chem. Phys. Lett. 2004, 397, 110).  相似文献   

13.
Ultrafast photolysis of 9-diazofluorene (DAF) produces a broadly absorbing transient within the instrument time resolution (300 fs), which is assigned to an excited state of the diazo compound. The diazo excited state fragments to form fluorenylidene (Fl) in both its lowest energy singlet state (1Fl, 405-430 nm, depending on the solvent) and a higher energy singlet state (370 nm, 1Fl*). The excited singlet carbene has a lifetime of 20.9 ps in acetonitrile and decays to the lower energy singlet state (1Fl), which relaxes to the triplet ground state (3Fl) in acetonitrile, cyclohexane, benzene, and hexafluorobenzene. The equilibrium mixture of singlet and triplet fluorenylidene reacts with these solvents. Singlet fluorenylidene reacts with methanol and cyclohexene in competition with relaxation to 3Fl. One of the reaction products in methanol is the 9-fluorenyl cation. The rate of intersystem crossing (ISC) in hexafluorobenzene and other halogenated solvents is remarkably slow given that carbene ISC rates are generally fastest in nonpolar solvents. An explanation of this effect is advanced.  相似文献   

14.
When irradiated with violet light, hexaazatrinaphthylene (HATN) extracts a hydrogen atom from an alcohol forming a long-living hydrogenated species. The apparent kinetic isotope effect for fluorescence decay time in deuterated methanol (1.56) indicates that the lowest singlet excited state of the molecule is a precursor for intermolecular hydrogen transfer. The photochemical hydrogenation occurs in several alcohols (methanol, ethanol, isopropanol) but not in water. Hydrogenated HATN can be detected optically by an absorption band at 1.78 eV as well as with EPR (electron paramagnetic resonance) and NMR techniques. Mass spectrometry of photoproducts reveal di-hydrogenated HATN structures along with methoxylated and methylated HATN molecules which are generated through the reaction with methoxy radicals (remnants from alcohol splitting). Experimental findings are consistent with the theoretical results which predicted that for the excited state of the HATN-solvent molecular complex, there exists a barrierless hydrogen transfer from methanol but a small barrier for the similar oxidation of water.  相似文献   

15.
Evidence is presented for the photochemical generation of novel biphenyl quinone methide (BQM)-type intermediates on photolysis of hydroxybiphenyl alkenes 7 and 8 and hydroxybiphenyl alcohols 9 and 10. Mechanistic investigations utilizing product, fluorescence, and nanosecond laser flash photolysis (LFP) studies indicate two distinct pathways for the formation of these BQMs depending upon the functional groups of the progenitor. Formal excited-state intramolecular proton transfer (ESIPT) between the phenol and the alkene led to BQMs upon irradiation of the hydroxybiphenyl alkenes 7 and 8, while excited-state proton transfer (ESPT) to solvent followed by dehydroxylation was responsible for BQM formation from the hydroxybiphenyl alcohols 9 and 10. Photolysis of 7 and 8 in aqueous CH(3)CN gave photohydration products via attack of water on the respective BQMs, while photolysis of the analogous methyl ethers (of the phenolic moiety) gave only carbocation intermediates. Hydroxybiphenyl alcohols 9 and 10 yielded the corresponding photomethanolysis products in aqueous methanol, through attack of CH(3)OH on the respective BQMs. Although no evidence was found for BQM formation in LFP studies of 8 and 10, due to its suspected short lifetime, the respective diaryl carbocation (lambda(max) 420 nm, tau = 8.5 micros) has been observed upon irradiation of 8 in 2,2,2-trifluoroethanol. A BQM (lambda(max) 580 nm) was observed for 9 but not for 10, the latter having more complex chemistry on laser excitation, resulting in a transient that appears to mask any BQM absorption. Significant quenching of fluorescence from the hydroxybiphenyl alkenes at low water content implies that H(2)O is directly involved in reaction from the singlet excited state. The decrease in fluorescence intensity of 8 was found to depend on [H(2)O](3); however, the distance required for ESIPT in these systems is too large to be bridged by a water trimer. The nonlinear quenching has been attributed to deprotonation of the phenol by two water molecules, with concerted protonation at the alkene by another molecule of water. Fluorescence quenching of the hydroxybiphenyl alcohols required much higher water content, implying a different mechanism of reaction, consistent with the proposal of ESPT (to solvent water) followed by dehydroxylation.  相似文献   

16.
To better understand DNA photodamage, several nucleosides were studied by femtosecond transient absorption spectroscopy. A 263-nm, 150-fs ultraviolet pump pulse excited each nucleoside in aqueous solution, and the subsequent dynamics were followed by transient absorption of a femtosecond continuum pulse at wavelengths between 270 and 700 nm. A transient absorption band with maximum amplitude near 600 nm was detected in protonated guanosine at pH 2. This band decayed in 191 +/- 4 ps in excellent agreement with the known fluorescence lifetime, indicating that it arises from absorption by the lowest excited singlet state. Excited state absorption for guanosine and the other nucleosides at pH 7 was observed in the same spectral region, but decayed on a subpicosecond time scale by internal conversion to the electronic ground state. The cross section for excited state absorption is very weak for all nucleosides studied, making some amount of two-photon ionization of the solvent unavoidable. The excited state lifetimes of Ado, Guo, Cyd, and Thd were determined to be 290, 460, 720, and 540 fs, respectively (uncertainties are +/-40 fs). The decay times are shorter for the purines than for the pyrimidine bases, consistent with their lower propensity for photochemical damage. Following internal conversion, vibrationally highly excited ground state molecules were detected in experiments on Ado and Cyd by hot ground state absorption at ultraviolet wavelengths. The decays are assigned to intermolecular vibrational energy transfer to the solvent. The longest time constant observed for Ado is approximately 2 ps, and we propose that solute-solvent H-bonds are responsible for this fast rate of vibrational cooling. The results show for the first time that excited singlet state dynamics of the DNA bases can be directly studied at room temperature. Like sunscreens that function by light absorption, the bases rapidly convert dangerous electronic energy into heat, and this property is likely to have played a critical role in life's early evolution on earth.  相似文献   

17.
Effect of solvent on the excited-state photophysical properties of curcumin   总被引:3,自引:0,他引:3  
Photophysical properties of curcumin, 1,7-bis-(4-hydroxy-3-methoxy phenyl)-1,6-heptadiene-2,5-dione, a pigment found in the rhizomes of Curcuma longa (turmeric) have been studied in different kinds of organic solvent and also in Triton X-100 aqueous micellar media using time-resolved fluorescence and transient absorption techniques having pico and nanosecond time resolution, in addition to steady-state absorption and fluorescence spectroscopic techniques. Steady-state absorption and fluorescence characteristics of curcumin have been found to be sensitive to the solvent characteristics. Large change (delta mu = 6.1 Debye) in dipole moments due to photoexcitation to the excited singlet state (S1) indicates strong intramolecular charge transfer character of the latter. Curcumin is a weakly fluorescent molecule and the fluorescence decay properties in most of the solvents could be fitted well to a double-exponential decay function. The shorter component having lifetime in the range 50-350 ps and percent contribution of amplitude more than 90% in different solvents may be assigned to the enol form, whereas the longer component, having lifetime in the range 500-1180 ps with less than 10% contribution may be assigned to the di-keto form of curcumin. Our nuclear magnetic resonance study in CDCl3 and dimethyl sulfoxide-D6 also supports the fact that the enol form is present in the solution by more than about 95% in these solvents. Excited singlet (S1) and triplet (T1) absorption spectrum and decay kinetics have been characterized by pico and nanosecond laser flash photolysis. Quantum yield of the triplet is low (phi T < or = 0.12). Both the fluorescence and triplet quantum yields being low (phi f + phi T < 0.18), the photophysics of curcumin is dominated by the energy relaxation mechanism via the internal conversion process.  相似文献   

18.
Upon exciting pseudoisocyanine iodide with 20 ps pulses at wavelengths between 490 and 530 nm within the absorption band, formation of a new transient absorption with a maximum at 545 nm was observed. It is attributed to an unstable photoisomer of pseudoisocyanine iodide. The quantum yield of the photoisomer is 31% in methanol and 6% in ethylene glycol  相似文献   

19.
We studied the direct proton transfer (PT) from electronically excited D-luciferin to several mild bases. The fluorescence up-conversion technique is used to measure the rise and decay of the fluorescence signals of the protonated and deprotonated species of D-luciferin. From a base concentration of 0.25 M or higher the proton transfer rates to the fluoride, dihdyrogen phosphate or acetate bases are fast and comparable. The fluorescence signals are nonexponential and complex. We suggest that the fastest decay component arises from a direct proton transfer process from the hydroxyl group of D-luciferin to the mild base. The proton donor and acceptor molecules form an ion pair prior to photoexcitation. Upon photoexcitation solvent rearrangement occurs on a 1 ps time-scale. The PT reaction time constant is ~2 ps for all three bases. A second decay component of about 10 ps is attributed to the proton transfer in a contact pair bridged by one water molecule. The longest decay component is due to both the excited-state proton transfer (ESPT) to the solvent and the diffusion-assisted PT process between a photoacid and a base pair positioned remotely from each other prior to photoexcitation.  相似文献   

20.
Proton transfer processes of 4-hydroxy-3-formyl benzoic acid (HFBA) have been studied in a number of different protic solvents by means of absorption, emission and nanosecond transient spectroscopy at room temperature and 77K. Intermolecular interaction occurs in polar protic solvents only in presence of a base in the ground state whereas in the excited state, intermolecular complex formation and proton transfer occurs even in pure protic solvents. The dianion is detected in water, methanol, ethanol and TFE in presence of base. HFBA shows phosphorescence in pure ethanol at 77K. The occurrence of phosphorescence is due to rupture of the intramolecular bond and rotation of the formyl group. We have calculated quantum yields of fluorescence and also estimated decay rates from nanosecond measurements. The energetics of the ground and excited state proton transfer in HFBA have been investigated at the AM1 level of approximation. The ground singlet is predicted to have a large activation barrier on the proton transfer path, while the barrier height is much lower on the corresponding excited singlet surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号