首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
3.
The transient hydrodynamics and thermal behaviours of the free convection from a vertical plate inserted in a semi-infinite domain partly filled with porous material are investigated. The role of the local macroscopic inertial term in the porous domain momentum equation is studied. It is found that the effect of the local inertial term on the domain behaviour is insignificant when Da < 1 × 10–5 for all operating conditions. Also, the effect of the macroscopic inertial term is insignificant at large values of R, where R > 2.0, and over the entire ranges of R, KR and Pr (thermal diffusivity ratios, thermal conductivity ratios and Prandtl number, respectively).  相似文献   

4.
Dimensional analysis of pore scale and field scale immiscible displacement   总被引:1,自引:0,他引:1  
A basic re-examination of the traditional dimensional analysis of microscopic and macroscopic multiphase flow equations in porous media is presented. We introduce a macroscopic capillary number which differs from the usual microscopic capillary number Ca in that it depends on length scale, type of porous medium and saturation history. The macroscopic capillary number is defined as the ratio between the macroscopic viscous pressure drop and the macroscopic capillary pressure. can be related to the microscopic capillary number Ca and the LeverettJ-function. Previous dimensional analyses contain a tacit assumption which amounts to setting = 1. This fact has impeded quantitative upscaling in the past. Our definition for , however, allows for the first time a consistent comparison between macroscopic flow experiments on different length scales. Illustrative sample calculations are presented which show that the breakpoint in capillary desaturation curves for different porous media appears to occur at 1. The length scale related difference between the macroscopic capillary number for core floods and reservoir floods provides a possible explanation for the systematic difference between residual oil saturations measured in field floods as compared to laboratory experiment.  相似文献   

5.
A rigid frame, cylindrical capillary theory of sound propagation in porous media that includes the nonlinear effects of the Forchheimer type is laid out by using variational solutions. It is shown that the five main parameters governing the propagation of sound waves in a fluid contained in rigid cylindrical tubes filled with a saturated porous media are: the shear wave number, , the reduced frequency parameter, , the porosity, ε, Darcy number, , and Forchheimer number, . The manner in which the flow influences the attenuation and the phase velocities of the forward and backward propagating non-isentropic acoustic waves is deduced. It is found that the inclusion of the solid matrix increases wave’s attenuations and phase velocities for both forward and backward sound waves, while increasing the porosity and the reduced frequency number decreased attenuation and increased phase velocities. The effect of the steady flow is found to decrease the attenuation and phase velocities for forward sound waves, and enhance them for the backward sound waves. This work is done during a sabbatical leave year granted form the University of Jordan to Dr. Hamzeh Duwairi for the academic year 2007/2008 at the German Jordanian University.  相似文献   

6.
The purpose of this article is to derive a macroscopic model for a certain class of inertial two-phase, incompressible, Newtonian fluid flow through homogenous porous media. Starting from the continuity and Navier–Stokes equations in each phase β and γ, the method of volume averaging is employed subjected to constraints that are explicitly provided to obtain the macroscopic mass and momentum balance equations. These constraints are on the length- and time-scales, as well as, on some quantities involving capillary, Weber and Reynolds numbers that define the class of two-phase flow under consideration. The resulting macroscopic momentum equation relates the phase-averaged pressure gradient to the filtration or Darcy velocity in a coupled nonlinear form explicitly given by
or equivalently
In these equations, and are the inertial and coupling inertial correction tensors that are functions of flow-rates. The dominant and coupling permeability tensors and and the permeability and viscous drag tensors and are intrinsic and are those defined in the conventional manner as in (Whitaker, Chem Eng Sci 49:765–780, 1994) and (Lasseux et al., Transport Porous Media 24(1):107–137, 1996). All these tensors can be determined from closure problems that are to be solved using a spatially periodic model of a porous medium. The practical procedure to compute these tensors is provided.  相似文献   

7.
A new macroscopic model for swelling porous media is derived based on a rigorous upscaling of the microstructure. Considering that at the microscale the medium is composed of a charged solid phase (e.g. clay platelets, bio-macromolecules, colloidal or polymeric particles) saturated by a binary monovalent aqueous electrolyte solution composed of cations + and anions – of an entirely dissociated salt, the homogenization procedure is applied to scale up the pore-scale model. The microscopic system of governing equations consists of the local electro-hydrodynamics governing the movement of the electrolyte solution (Poisson–Boltzmann coupled with a modified Stokes problem including an additional body force of Coulombic interaction) together with modified convection–diffusion equations governing cations and anions transport. This system is coupled with the elasticity problem which describes the deformation of the solid phase. Novel forms of Terzaghi's effective principle and Darcy's law are derived including the effects of swelling pressure and osmotically induced flows, respectively. Micromechanical representations are provided for the macroscopic physico-chemical quantities.  相似文献   

8.
Two-phase flow in stratified porous media is a problem of central importance in the study of oil recovery processes. In general, these flows are parallel to the stratifications, and it is this type of flow that we have investigated experimentally and theoretically in this study. The experiments were performed with a two-layer model of a stratified porous medium. The individual strata were composed of Aerolith-10, an artificial: sintered porous medium, and Berea sandstone, a natural porous medium reputed to be relatively homogeneous. Waterflooding experiments were performed in which the saturation field was measured by gamma-ray absorption. Data were obtained at 150 points distributed evenly over a flow domain of 0.1 × 0.6 m. The slabs of Aerolith-10 and Berea sandstone were of equal thickness, i.e. 5 centimeters thick. An intensive experimental study was carried out in order to accurately characterize the individual strata; however, this effort was hampered by both local heterogeneities and large-scale heterogeneities.The theoretical analysis of the waterflooding experiments was based on the method of large-scale averaging and the large-scale closure problem. The latter provides a precise method of discussing the crossflow phenomena, and it illustrates exactly how the crossflow influences the theoretical prediction of the large-scale permeability tensor. The theoretical analysis was restricted to the quasi-static theory of Quintard and Whitaker (1988), however, the dynamic effects described in Part I (Quintard and Whitaker 1990a) are discussed in terms of their influence on the crossflow.Roman Letters A interfacial area between the -region and the -region contained within V, m2 - a vector that maps onto , m - b vector that maps onto , m - b vector that maps onto , m - B second order tensor that maps onto , m2 - C second order tensor that maps onto , m2 - E energy of the gamma emitter, keV - f fractional flow of the -phase - g gravitational vector, m/s2 - h characteristic length of the large-scale averaging volume, m - H height of the stratified porous medium , m - i unit base vector in the x-direction - K local volume-averaged single-phase permeability, m2 - K - {K}, large-scale spatial deviation permeability - { K} large-scale volume-averaged single-phase permeability, m2 - K * large-scale single-phase permeability, m2 - K ** equivalent large-scale single-phase permeability, m2 - K local volume-averaged -phase permeability in the -region, m2 - K local volume-averaged -phase permeability in the -region, m2 - K - {K } , large-scale spatial deviation for the -phase permeability, m2 - K * large-scale permeability for the -phase, m2 - l thickness of the porous medium, m - l characteristic length for the -region, m - l characteristic length for the -region, m - L length of the experimental porous medium, m - characteristic length for large-scale averaged quantities, m - n outward unit normal vector for the -region - n outward unit normal vector for the -region - n unit normal vector pointing from the -region toward the -region (n = - n ) - N number of photons - p pressure in the -phase, N/m2 - p 0 reference pressure in the -phase, N/m2 - local volume-averaged intrinsic phase average pressure in the -phase, N/m2 - large-scale volume-averaged pressure of the -phase, N/m2 - large-scale intrinsic phase average pressure in the capillary region of the -phase, N/m2 - - , large-scale spatial deviation for the -phase pressure, N/m2 - pc , capillary pressure, N/m2 - p c capillary pressure in the -region, N/m2 - p capillary pressure in the -region, N/m2 - {p c } c large-scale capillary pressure, N/m2 - q -phase velocity at the entrance of the porous medium, m/s - q -phase velocity at the entrance of the porous medium, m/s - Swi irreducible water saturation - S /, local volume-averaged saturation for the -phase - S i initial saturation for the -phase - S r residual saturation for the -phase - S * { }*/}*, large-scale average saturation for the -phase - S saturation for the -phase in the -region - S saturation for the -phase in the -region - t time, s - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the -phase, m/s - {v } large-scale averaged velocity for the -phase, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - V large-scale averaging volume, m3 - y position vector relative to the centroid of the large-scale averaging volume, m - {y}c large-scale average of y over the capillary region, m Greek Letters local porosity - local porosity in the -region - local porosity in the -region - local volume fraction for the -phase - local volume fraction for the -phase in the -region - local volume fraction for the -phase in the -region - {}* { }*+{ }*, large-scale spatial average volume fraction - { }* large-scale spatial average volume fraction for the -phase - mass density of the -phase, kg/m3 - mass density of the -phase, kg/m3 - viscosity of the -phase, N s/m2 - viscosity of the -phase, Ns/m2 - V /V , volume fraction of the -region ( + =1) - V /V , volume fraction of the -region ( + =1) - attenuation coefficient to gamma-rays, m-1 - -   相似文献   

9.
The flow of an adiabatic gas through a porous media is treated analytically for steady one- and two-dimensional flows. The effect on a compressible Darcy flow by inertia and Forchheimer terms is studied. Finally, wave solutions are found which exhibit a cut-off frequency and a phase shift between pressure and velocity of the gas, with the velocity lagging behind the pressure.Nomenclature A area of tube for one-dimensional flow - B drag coefficient associated with Forchheimer term - c speed of sound - M Mach number - p * gas pressure - p dimensionless gas pressure - s coordinate along the axis of tube - t * time variable - t dimensionless time variable - V* gas velocity in the porous media - V dimensionless gas velocity Greek Letters ratio of specific heat capacities - phase angle between gas pressure and velocity for linear waves - parameter indicating the importance of the inertia term - viscosity - p natural frequency of the porous media - * gas density - dimensionless gas density - parameter indicating the importance of the Forchheimer term - porosity of porous media - velocity potential - stream function  相似文献   

10.
High Forchheimer number flow through a rigid porous medium is numerically analysed by means of the volumetric averaging concept. The microscopic flow mechanisms, which must be known in order to understand the macroscopic flow phenomena, are studied by utilising a periodic diverging-converging representative unit cell (RUC). The detailed information for the microscopic flow field, in association with the locally averaged momentum balance, makes it possible to quantitatively demonstrate that the microscopic inertial phenomenon, which leads to distorted velocity and pressure fields, is the fundamental reason for the onset of nonlinear (non-Darcy) effects as velocity increases. The hydrodynamic definitions for Darcy's law permeabilityk, the inertial coefficient and Forchheimer number Fo are obtained by applying the averaging theorem to the pore level Navier-Stokes equations. Finally, these macroscopic parameters are numerically calculated at various combinations of micro-geometry and flow rate, and graphically correlated with the relevant microscopic parameters.Nomenclature a i body force acceleration (m/s2) - A viscous integral term defined in (4.6) - A f area of entrance and exist of RUC (m2) - A fs interfacial area between the fluid and solid phases (m2) - B pressure integral term defined in (4.4) - d throat diameter of RUC (m) - D pore diameter of RUC (m) - Fo Forchheimer number defined in (4.1) and (4.10) - g gravitational acceleration (m/s2) - i, j microscopic unit vector for RUC - k Darcy's law permeability (m2) - k v velocity dependent permeability defined in (4.1) (m2) - L length of a unit cell (m) - L p pore length of RUC (m) - L t throat length of RUC (m) - n unit outwardly directed vector for the fluid phase - p microscopic fluid pressure (N/m2) - P macroscopic fluid pressure (N/m2) - en mean pressure at entrance of RUC (N/m2) - ex mean pressure at exit of RUC (N/m2) - r i,r coordinate on the macroscopic scale (m) - Re d Reynolds number defined in (4.5) - u i,u microscopic velocity (m/s) - specific discharge (m/s) - d mean velocity at the throat of RUC (m/s) - v microscopic velocity (m/s) - V b representative elementary volume (REV) (m3) - V f volume occupied by the fluid within REV (m3) - V s volume occupied by the solid within REV (m3) - x i,x coordinate on the microscopic scale (m) - X i,X coordinate on the macroscopic scale (m) Greek the inertia coefficient (1/m) - viscosity coefficient (Ns/m2) - i microscopic unit vector - areosity at the entrance and the exit cross-section of RUC - fluid density (kg/m3) - porosity - f a general property of the fluid phase Symbols f intrinsic phase average - the fluctuating part of f - the mean value of f - f * the dimensionless value of f  相似文献   

11.
In this paper we continue previous studies of the closure problem for two-phase flow in homogeneous porous media, and we show how the closure problem can be transformed to a pair of Stokes-like boundary-value problems in terms of pressures that have units of length and velocities that have units of length squared. These are essentially geometrical boundary value problems that are used to calculate the four permeability tensors that appear in the volume averaged Stokes' equations. To determine the geometry associated with the closure problem, one needs to solve the physical problem; however, the closure problem can be solved using the same algorithm used to solve the physical problem, thus the entire procedure can be accomplished with a single numerical code.Nomenclature a a vector that maps V onto , m-1. - A a tensor that maps V onto . - A area of the - interface contained within the macroscopic region, m2. - A area of the -phase entrances and exits contained within the macroscopic region, m2. - A area of the - interface contained within the averaging volume, m2. - A area of the -phase entrances and exits contained within the averaging volume, m2. - Bo Bond number (= (=(–)g2/). - Ca capillary number (= v/). - g gravitational acceleration, m/s2. - H mean curvature, m-1. - I unit tensor. - permeability tensor for the -phase, m2. - viscous drag tensor that maps V onto V. - * dominant permeability tensor that maps onto v , m2. - * coupling permeability tensor that maps onto v , m2. - characteristic length scale for the -phase, m. - l characteristic length scale representing both and , m. - L characteristic length scale for volume averaged quantities, m. - n unit normal vector directed from the -phase toward the -phase. - n unit normal vector representing both n and n . - n unit normal vector representing both n and n . - P pressure in the -phase, N/m2. - p superficial average pressure in the -phase, N/m2. - p intrinsic average pressure in the -phase, N/m2. - p p , spatial deviation pressure for the -phase, N/m2. - r 0 radius of the averaging volume, m. - r position vector, m. - t time, s. - v fluid velocity in the -phase, m/s. - v superficial average velocity in the -phase, m/s. - v intrinsic average velocity in the -phase, m/s. - v v , spatial deviation velocity in the -phase, m/s. - V volume of the -phase contained within the averaging volmue, m3. - averaging volume, m3. Greek Symbols V /, volume fraction of the -phase. - viscosity of the -phase, Ns/m2. - density of the -phase, kg/m3. - surface tension, N/m. - (v +v T ), viscous stress tensor for the -phase, N/m2.  相似文献   

12.
The seepage velocity arising from pressure and buoyancy driving forces in a slender vertical layer of fluid-saturated porous media is considered. Quadratic drag (Forcheimer effects) and Brinkman viscous forces are included in the analysis. Parameters are identified which characterize the influence of matrix permeability, quadratic drag and buoyancy. An explicit solution is obtained for pressure-driven flow which illustrates the influence of quadratic drag and the strong boundary layer behavior expected for low permeability media. The experimental data of Givler and Altobelli [2] for water seepage through a high porosity foam is found to yield good agreement with the present analysis. For the case of buoyancy-driven flow, a uniformly valid approximate solution is found for low permeability media. Comparison with the pressure-driven case shows strong similarities in the near-wall region.Nomenclature B function of - d layer thickness - D discriminant defined by Equation (9) - modified Darcy number - F Forcheimer constant - g gravitational acceleration - k porous matrix permeability - m parameter defined by Equation (11) - p pressure - p modified pressure - pressure gradient - R buoyancy parameter - T 0 nominal layer temperature - u seepage velocity - dimensionless seepage velocity - c composite approximation - i boundary layer velocity - o outer or core flow approximation - m midplane velocity - U matching velocity - V cross-sectional average velocity - w variable defined by Equation (12) - x, z Cartesian coordinates - , dimensionless Cartesian coordinates - inertia parameter - T layer temperature difference - larger root of cubic given by Equation (8) - fluid dynamic viscosity - e effective viscosity of fluid saturated medium - variable defined by Equation (18) - 0 fluid density - smaller root of cubic given by Equation (8) - variable defined by Equation (18) - stretched inner coordinate - porosity - function of   相似文献   

13.
A development is provided showing that for any phase, by not neglecting the macroscopic terms of the deviation from the intensive momentum and of the dispersive momentum, we obtain a macroscopic secondary momentum balance equation coupled with a macroscopic dominant momentum balance equation that is valid at a larger spatial scale. The macroscopic secondary momentum balance equation is in the form of a wave equation that propagates the deviation from the intensive momentum while concurrently, in the case of a Newtonian fluid and under certain assumptions, the macroscopic dominant momentum balance equation may be approximated by Darcys equation to address drag dominant flow. We then develop extensions to the dominant macroscopic Navier–Stokes (NS) equation for saturated porous matrices, to account for the pressure gradient at the microscopic solid-fluid interfaces. At the microscopic interfaces we introduce the exchange of inertia between the phases, accounting for the relative fluid square velocities and the rate of these velocities, interpreted as Forchheimer terms. Conditions are provided to approximate the extended dominant NS equation by Forchheimer quadratic momentum law or by Darcys linear momentum law. We also show that the dominant NS equation can conform into a nonlinear wave equation. The one-dimensional numerical solution of this nonlinear wave equation demonstrates good qualitative agreement with experiments for the case of a highly deformable elasto-plastic matrix.  相似文献   

14.
This paper discusses scaling of mixing during miscible flow in heterogeneous porous media. In large field systems dispersivity appears to depend on system length due to heterogeneities. Three types of scaling are discussed to investigate the heterogeneous effects. Dimensional analysis of mixing during flow through geometerically scaled heterogeneous models is illustrated using measured dispersion. Fractal analysis of mixing in statistically scaled heterogeneous porous media is discussed. Analog scaling of pressure transients in heterogeneous porous media is suggested as an in-situ method of estimating dispersion.Notation L Length - M mass - t time, (1) indicates dimensionless - a dispersivity (L) - V local velocity (L/t) - c concentration (l). - v velocity (L/t) - C1 fluid compressibility (Lt2/M) - v time averaged velocity (LJt) - D dispersion VA) - W width (L) - D fractional dimension (1) - x coordinate (L) - d Euclidean dimension (1) - Y Y=In \-k (l) - \-d average particle size (L) - y coordinate (L) - g acceleration due to gravity (L/t2) - c fractal cutoff (L) - \-k average permeability (L2) - viscosity (LM/t) - L length (L) - porosity (1) - L correlation scale (1/L) - density (N/L3) - N Number of sites (l) - 2 variance (dimension depends on variable) - p pressure (W/t2L) - spectral exponent (l) - [R] randomnumber (1) - r radius (L) - t time (t)  相似文献   

15.
In this work we consider transport in ordered and disordered porous media using singlephase flow in rigid porous mediaas an example. We defineorder anddisorder in terms of geometrical integrals that arise naturally in the method of volume averaging, and we show that dependent variables for ordered media must generally be defined in terms of thecellular average. The cellular average can be constructed by means of a weighting function, thus transport processes in both ordered and disordered media can be treated with a single theory based on weighted averages. Part I provides some basic ideas associated with ordered and disordered media, weighted averages, and the theory of distributions. In Part II a generalized averaging procedure is presented and in Part III the closure problem is developed and the theory is compared with experiment. Parts IV and V provide some geometrical results for computer generated porous media.Roman Letters A interfacial area of the- interface contained within the macroscopic region, m2 - Ae area of entrances and exits for the-phase contained within the macroscopic system, m2 - g gravity vector, m/s2 - I unit tensor - K traditional Darcy's law permeability tensor, m2 - L general characteristic length for volume averaged quantities, m - characteristic length (pore scale) for the-phase - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - N unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - p0 reference pressure in the-phase, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - r0 radius of a spherical averaging volume, m - r position vector, m - r position vector locating points in the-phase, m - averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - v velocity vector in the-phase, m/s - v traditional superficial volume averaged velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V/V, volume average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2  相似文献   

16.
To quantitatively analyze the macroscopic properties of the flow in porous media by means of the continuum approach, detailed information (velocity and pressure fields) on the microscopic scale is necessary. In this paper, the numerical solution for incompressible, Newtonian flow in a diverging-converging representative unit cell (RUC) is presented. A new solution procedure for the problem is introduced. A review of the accuracy of the computational method is given.Nomenclature A ff * area of entrance and exit of RUC - A fs * interfacial area between the fluid and solid phases - d throat diameter of RUC (m) - D pore diameter of RUC (m) - i, j unit vector for RUC - L * wave length of a unit cell - L p pore length of RUC (m) - L t throat length of RUC (m) - n unit outwardly directed vector for the fluid phase - p * fluid pressure - * cross-sectional mean pressure - en * entrance cross-sectional mean pressure - Re d Reynolds number - x *, r* cylindrical coordinates - u *, v* velocity - u cl * centerline velocity - d mean velocity at the throat of RUC (m/s) - D mean velocity at the large segment of RUC (m/s) Greek viscosity coefficient (Ns/m2) - p excess momentum loss factor defined in (4.1) - fluid density (kg/m3) - * stream function - * vorticity - dimensionless circulation defined in (2.7) Symbols - the mean value - * dimensionless quantities  相似文献   

17.
We investigate a two-dimensional lattice gas automaton (LGA) for simulating the nonlinear diffusion equation in a random heterogeneous structure. The utilility of the LGA for computation of nonlinear diffusion arises from the fact that, the diffusion coefficient in the LGA depends on the local density of fluid particles which statistically determines the collision rate and thus, the mean free path of the particles at the microscopic scale. The LGA may therefore be used as a physical analogue to simulate moisture flow in unsaturated porous media. The capability of the LGA to account for unsaturated flow is tested through a set of numerical experiments simulating one-dimensional infiltration in a simplified semi-infinite homogenous isotropic porous material. Different mechanisms of interactions are used between the fluid and the solid phase to simulate various fluid–solid interfaces. The heterogeneous medium, initially at low density is submitted to a steep density gradient by continuously injecting fluid particles at high concentration and zero velocity along one face of the model. The propagation of the infiltration front is visualized at different time steps through concentration profiles parallel to the applied concentration gradient and the infiltration rate is measured continuously until steady-state flow is reached. The numerical results show close agreement with the classical theory of flow in unsaturated porous media. The cumulative absorption exhibits the expected t 1/2 dependence. The evolution of the effective diffusion coefficient with the particle concentration is estimated from the measured density profiles for the various porous materials. Depending on the applied fluid–solid interactions, the macroscopic effective diffusivity may vary by more than two orders of magnitude with density.  相似文献   

18.
Carbon dioxide (CO2) injections in geological formations are usually performed for enhanced hydrocarbon recovery in oil and gas reservoirs and storage and sequestration in saline aquifers. Once CO2 is injected into the formation, it propagates in the porous rock by dispersion and convection. Chemical reactions between brine ions and CO2 molecules and consequent reactions with mineral grains are also important processes. The dynamics of CO2 molecules in random porous media are modeled with a set of differential equations corresponding to pore scale and continuum macroscale. On the pore scale, convective–dispersive equation is solved considering reactions on the inner boundaries in a unit cell. A unit cell is the smallest portion of a porous media that can reproduce the porous media by repetition. Inner boundaries in a unit cell are the surfaces of the mineral grains. Dispersion process at the pore scale is transformed into continuum macroscale by adopting periodic boundary conditions for contiguous unit cells and applying Taylor-Aris dispersion theory known as macrotransport theory. Using this theory, the discrete porous system changes into a continuum system within which the propagation and interaction of CO2 molecules with fluid and solid matrix of the porous media are characterized by three position-independent macroscopic coefficients: the mean velocity vector , dispersivity dyadic , and mean volumetric CO2 depletion coefficient .  相似文献   

19.
This paper presents a number of applications of a new code which can simulate the transport of high temperature three-phase (gas, liquid, solid) hyper-saline fluids in a porous medium. The examples presented demonstrate that multiple phase changes occur as the fluid state evolves across the H2O–NaCl phase diagram. Multi-phase flows occur in a variety of situations, including a horizontal domain with fluid withdrawal, a vertical counter-flowing salt-pipe, and a horizontal domain with saturation shocks and expansion waves. The code is also used to simulate heat, water and salt flows in a large scale model (10s of km) of the Taupo Volcanic Zone, New Zealand.  相似文献   

20.
In this work, we make use of numerical experiments to explore our original theoretical analysis of two-phase flow in heterogeneous porous media (Quintard and Whitaker, 1988). The calculations were carried out with a two-region model of a stratified system, and the parameters were chosen be consistent with practical problems associated with groundwater flows and petroleum reservoir recovery processes. The comparison between theory (the large-scaled averaged equations) and experiment (numerical solution of the local volume averaged equations) has allowed us to identify conditions for which the quasi-static theory is acceptable and conditions for which a dynamic theory must be used. Byquasi-static we mean the following: (1) The local capillary pressure,everywhere in the averaging volume, can be set equal to the large-scale capillary pressure evaluated at the centroid of the averaging volume and (2) the large-scale capillary pressure is given by the difference between the large-scale pressures in the two immiscible phases, and is therefore independent of gravitational effects, flow effects and transient effects. Bydynamic, we simply mean a significant departure from the quasi-static condition, thus dynamic effects can be associated with gravitational effects, flow effects and transient effects. To be more precise about the quasi-static condition we need to refer to the relation between the local capillary pressure and the large-scale capillary pressure derived in Part I (Quintard and Whitaker, 1990). Herep c ¦y represents the local capillary pressure evaluated at a positiony relative to the centroid of the large-scale averaging volume, and {p c x represents the large-scale capillary pressure evaluated at the centroid.In addition to{p c } c being evaluated at the centroid, all averaged terms on the right-hand side of Equation (1) are evaluated at the centroid. We can now write the equations describing the quasi-static condition as , , This means that the fluids within an averaging volume are distributed according to the capillary pressure-saturation relationwith the capillary pressure held constant. It also means that the large-scale capillary pressure is devoid of any dynamic effects. Both of these conditions represent approximations (see Section 6 in Part I) and one of our main objectives in this paper is to learn something about the efficacy of these approximations. As a secondary objective we want to explore the influence of dynamic effects in terms of our original theory. In that development only the first four terms on the right hand side of Equation (1) appeared in the representation for the local capillary pressure. However, those terms will provide an indication of the influence of dynamic effects on the large-scale capillary pressure and the large-scale permeability tensor, and that information provides valuable guidance for future studies based on the theory presented in Part I.Roman Letters A scalar that maps {}*/t onto - A scalar that maps {}*/t onto - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - a vector that maps ({}*/t) onto , m - a vector that maps ({}*/t) onto , m - b vector that maps ({p}– g) onto , m - b vector that maps ({p}– g) onto , m - B second order tensor that maps ({p}– g) onto , m2 - B second order tensor that maps ({p}– g) onto , m2 - c vector that maps ({}*/t) onto , m - c vector that maps ({}*/t) onto , m - C second order tensor that maps ({}*/t) onto , m2 - C second order tensor that maps ({}*/t) onto . m2 - D third order tensor that maps ( ) onto , m - D third order tensor that maps ( ) onto , m - D second order tensor that maps ( ) onto , m2 - D second order tensor that maps ( ) onto , m2 - E third order tensor that maps () onto , m - E third order tensor that maps () onto , m - E second order tensor that maps () onto - E second order tensor that maps () onto - p c =(), capillary pressure relationship in the-region - p c =(), capillary pressure relationship in the-region - g gravitational vector, m/s2 - largest of either or - - - i unit base vector in thex-direction - I unit tensor - K local volume-averaged-phase permeability, m2 - K local volume-averaged-phase permeability in the-region, m2 - K local volume-averaged-phase permeability in the-region, m2 - {K } large-scale intrinsic phase average permeability for the-phase, m2 - K –{K }, large-scale spatial deviation for the-phase permeability, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K * large-scale permeability for the-phase, m2 - L characteristic length associated with local volume-averaged quantities, m - characteristic length associated with large-scale averaged quantities, m - I i i = 1, 2, 3, lattice vectors for a unit cell, m - l characteristic length associated with the-region, m - ; characteristic length associated with the-region, m - l H characteristic length associated with a local heterogeneity, m - - n unit normal vector pointing from the-region toward the-region (n =–n ) - n unit normal vector pointing from the-region toward the-region (n =–n ) - p pressure in the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure in the-phase, N/m2 - {p } large-scale intrinsic phase average pressure in the capillary region of the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - P c p –{p }, capillary pressure, N/m2 - {pc}c large-scale capillary pressure, N/m2 - r 0 radius of the local averaging volume, m - R 0 radius of the large-scale averaging volume, m - r position vector, m - , m - S /, local volume-averaged saturation for the-phase - S * {}*{}*, large-scale average saturation for the-phaset time, s - t time, s - u , m - U , m2 - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - {v } large-scale intrinsic phase average velocity for the-phase in the capillary region of the-phase, m/s - {v } large-scale phase average velocity for the-phase in the capillary region of the-phase, m/s - v –{v }, large-scale spatial deviation for the-phase velocity, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - V local averaging volume, m3 - V volume of the-phase in, m3 - V large-scale averaging volume, m3 - V capillary region for the-phase within, m3 - V capillary region for the-phase within, m3 - V c intersection of m3 - V volume of the-region within, m3 - V volume of the-region within, m3 - V () capillary region for the-phase within the-region, m3 - V () capillary region for the-phase within the-region, m3 - V () , region in which the-phase is trapped at the irreducible saturation, m3 - y position vector relative to the centroid of the large-scale averaging volume, m Greek Letters local volume-averaged porosity - local volume-averaged volume fraction for the-phase - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region (This is directly related to the irreducible saturation.) - {} large-scale intrinsic phase average volume fraction for the-phase - {} large-scale phase average volume fraction for the-phase - {}* large-scale spatial average volume fraction for the-phase - –{}, large-scale spatial deviation for the-phase volume fraction - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - a generic local volume-averaged quantity associated with the-phase - mass density of the-phase, kg/m3 - mass density of the-phase, kg/m3 - viscosity of the-phase, N s/m2 - viscosity of the-phase, N s/m2 - interfacial tension of the - phase system, N/m - , N/m - , volume fraction of the-phase capillary (active) region - , volume fraction of the-phase capillary (active) region - , volume fraction of the-region ( + =1) - , volume fraction of the-region ( + =1) - {p } g, N/m3 - {p } g, N/m3  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号