首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption irreversibility of Zn(II) on TiO2 at various temperatures was studied using a combination of classical macroscopic methods and extended X-ray absorption fine structure (EXAFS) spectroscopy. When the temperature was increased from 5 to 40 degrees C, the Zn(II) adsorption capacity increased by 130%, and adsorbed Zn(II) became more reversible. The standard Gibbs free energy change (DeltaG 0) of the adsorption reaction at 5, 20, and 40 degrees C was determined to be -19.58+/-0.30, -22.28+/-0.10, and -25.14+/-0.21 kJ mol(-1), respectively. And the standard enthalpy (DeltaH 0) and entropy (DeltaS 0) were 24.55+/-2.91 kJ mol(-1) and 159.13+/-0.53 J mol(-1)K(-1), respectively. EXAFS spectra results showed that the hydrated Zn(II) was adsorbed through fourfold coordination with an average ZnO bond distance of 1.98+/-0.01 A. Two ZnTi atomic distances of 3.25+/-0.02 and 3.69+/-0.03 A were observed, which corresponded to an edge-sharing linkage mode (strong adsorption) and a corner-sharing linkage mode (weak adsorption), respectively. As the temperature increased from 5 to 40 degrees C, the number of strong adsorption sites (N1) remained relatively constant while the number for the weak adsorption sites (N2) increased by 31%. These results indicate that the net gain in adsorption capacity and the decreased adsorption irreversibility at elevated temperatures were due to the increase in available weak adsorption sites (N2) or the decrease in the ratio of N1/N2. Both the macroscopic sorption/desorption equilibrium data and the molecular level evidence of this study suggest that in a given environmental system (e.g., soils or natural waters) zinc and other similar heavy metals are likely more mobile at higher temperatures.  相似文献   

2.
用延展X射线吸收精细结构光谱(EXAFS)研究了不同温度对Zn(II)-锐钛矿型TiO2吸附产物微观构型和吸附可逆性的影响机制. 宏观的吸附-解吸实验表明, 不同温度下的吸附等温线可以用Langmuir 模型进行较好的描述(R2≥0.990). 随温度升高, 吸附等温线显著升高, Zn(II)在TiO2表面的饱和吸附量由5 ℃时的0.125 mmol·g-1增至40 ℃时的0.446 mmol·g-1; 而体系的不可逆性明显减弱, 解吸滞后角θ由32.85°减至8.64°. 求得体系反应的热力学参数⊿H、⊿S分别为24.55 kJ·mol-1 和159.13 J·mol-1·K-1. EXAFS结果表明, Zn(II)主要是通过共用水合Zn(II)离子及TiO2表面上的O原子结合到TiO2表面上,其平均Zn-O原子间距为RZn-O=(0.199±0.001) nm. 第二配位层(Zn-Ti 层)的EXAFS图谱分析结果表明, 存在两个典型的Zn-Ti 原子间距, 即R1=(0.325±0.001) nm (边-边结合的强吸附)和R2=(0.369±0.001) nm(角-角结合的弱吸附). 随温度升高, 强吸附比例(CN1)基本不变而弱吸附比例(CN2)增加, 两者比值(CN1/CN2)逐渐减小. 该比值的变化从微观角度解释了宏观实验中温度升高, 不可逆性减弱的吸附现象.  相似文献   

3.
Microscopic structures of Zn(II) surface complexes adsorbed at the manganite (gamma-MnOOH)-water interface were studied using extended X-ray absorption fine structure (EXAFS) spectroscopy. Quantitative analysis of the first sphere showed that, in a 0.1 M NaNO(3) solution of pH 7.5, Zn(II) was adsorbed as a mixture of tetrahedral and octahedral structure (ZnO(4,6) polyhedra) and the average Zn-O distance was 2.00+/-0.01 A. EXAFS analysis of the second sphere showed that two typical atomic Zn-Mn distances of 3.07+/-0.01 and 3.52+/-0.02 A existed in the surface complexes, indicating that there were two types of linkage, i.e., the edge-linkage of high affinity and the corner-linkage of low affinity, between the ZnO(4,6) polyhedra and the MnO(6) octahedra of the manganite. Macroscopic adsorption-desorption experiments showed that adsorption of Zn(II) onto manganite was largely irreversible and the stronger edge-linkage mode was found to be responsible for the adsorption irreversibility. This result provided direct evidence from the molecular level for the basic hypothesis of the metastable-equilibrium adsorption (MEA) theory that adsorption density is not a thermodynamic state variable because a given value of adsorption density could have different values of chemical potential, depending on the proportion between the edge and corner linkage modes.  相似文献   

4.
Microscopic structures of Zn(II) adsorbed on anatase TiO2 surface with different densities were studied using extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculation. Quantitative analysis of the EXAFS spectra showed that microscopic structures of Zn(II) were fourfold coordinated complexes, and different microscopic structures were present of the solid surface. Three modes of corner–corner/sharing-corner/sharing-edge adsorptions on anatase (101) face cluster were calculated by the DFT method. The results from DFT method were consistent with the EXAFS fittings. The optimized Zn–O average distance of the Zn–O tetrahedron was determined as about 2.00 Å. The Zn–Ti distance was 3.69 Å for the corner–corner adsorption, 3.35 Å for the sharing-corner adsorption, and 3.02 Å for the sharing-edge adsorption. According to the adsorption energies calculated by the DFT method, the microscopic structure of corner–corner adsorption was less stable than those of the other adsorption modes. With the increasing adsorption density, the corner–corner adsorption mode would be enhanced more intensively than the other adsorption modes.  相似文献   

5.
EXAFS研究不同酸度下Zn2+在水锰矿表面的吸附和沉淀   总被引:2,自引:0,他引:2  
用EXAFS(extended X-ray absorption fine structure)研究了pH 7.00、7.50、8.00时Zn(II)在水锰矿表面的吸附和沉淀. Zn第一层配位Zn—O距离约为0.202 nm, 不随pH变化, 表明Zn的构型为四面体和八面体的混合物. 在pH 7.00 条件下, Zn—Mn距离约为0.300 nm, Zn主要以双边形式吸附在水锰矿(010)或(110)面. pH 7.50和pH 8.00时, 大部分的Zn在表面形成了结构类似于沉淀样品的多核羟基络合物, 其中0.311 nm Zn—Zn距离对应两个Zn八面体连接, 而0.353 nm Zn—Zn距离对应Zn八面体和Zn四面体连接.  相似文献   

6.
应用延展X射线吸收精细结构(EXAFS)方法, 研究了不同pH对Zn(Ⅱ)在锐钛矿型TiO2表面吸附产物的微观构型的影响. 宏观的吸附-解吸实验表明, 随着pH值由5.8增大至6.8, 吸附等温线明显升高, Freundlich吸附常数由1.345 L/g增加到15.385 L/g; 而体系的不可逆性逐渐降低, 不可逆吸附系数(TⅡ)由0.43降低到0.23. 不同pH条件下吸附样品的EXAFS结果表明, Zn(Ⅱ)主要通过共用水合离子及TiO2表面的O原子结合到TiO2表面上, 第一配位层(Zn—O层)原子间距和配位数随着pH值增大逐渐降低, Zn(Ⅱ)在TiO2表面吸附形态从六配位向四配位转化;第二配位层(Zn—Ti层)分析结果表明, 存在2个典型的Zn—Ti原子间距, 即R1=0.319~0.334 nm(双齿方式结合的强吸附)和R2=0.366~0.378 nm(单齿方式结合的弱吸附), 随着pH值的升高, 强吸附位(CN1)逐渐减少而弱吸附位(CN2)逐渐增加, 其比值由2.12降低至0.89, 从而导致其在高pH值的条件下吸附量和可逆性明显增大. EXAFS结果从分子水平说明了该体系在不同pH值条件下表现出的可逆性差异是由于微观吸附状态不同所致.  相似文献   

7.
Zn(Ⅱ)在TiO2表面上的微观吸附模式研究   总被引:1,自引:1,他引:0  
用延展X射线吸收精细结构(EXAFS)技术并结合密度泛函理论(DFT)研究了Zn(Ⅱ)在锐钛型TiO2表面上微观吸附结构。EXAFS结果表明, Zn(Ⅱ)在吸附时由自由水合状态下的Zn—O六配位八面体结构向四配位四面体结构转化, 中心Zn原子的第二配位层存在两种不同的Zn—Ti距离(R1=0.371和R2=0.332 nm). 用DFT方法对四配位水合Zn离子在簇Ti2O11H14上进行优化后发现, 四配位的Zn—O平均距离为0.200 nm; 外层Zn—Ti结合存在两种稳定的吸附模式: 单角吸附模式和更加稳定的双角吸附模式, 其Zn—Ti距离分别为0.369和0.335 nm. EXAFS结果与DFT计算结果吻合, 说明Zn(Ⅱ)在锐钛型TiO2表面上存在不同的亚稳平衡态吸附结构.  相似文献   

8.
Adsorption of Ga on calcite, magnesite, amorphous silica, and manganese oxide as a function of pH and gallium concentration in solution was studied using a batch adsorption technique. Adsorbed complexes of Ga on calcite, magnesite, and delta-MnO2 were further characterized using XAFS spectroscopy. At high surface loadings from supersaturated solutions, Ga is likely to form a polymeric network at the surface (edge- and corner-sharing octahedra). At low surface loadings, Ga presents as isolated octahedra, probably attached to the Me-O sites on the surface, and coordinated by water molecules and hydroxide groups at 1.90-1.94 A. At pH>6, Ga therefore changes its coordination from 4 to 6 when adsorbing from solution (Ga(OH)(-)4(aq)) onto metal surface sites (MeOGa(OH)n(H2O)2-n(5-n), Me = Ca, Mg, or Mn, and n=1 and 2 for carbonate minerals and MnO2, respectively). Because the EXAFS is not capable of seeing hydrogen atoms, the protonation of surface complexes was determined by fitting the experimental pH-dependent Ga adsorption edge. A surface complexation model which assumes the constant capacitance of the electric double layer (CCM) and postulates the formation of positively charged, neutral and negatively charged surface complexes for carbonates, manganese oxide and silica, respectively, was used to describe the dependence of adsorption equilibria on aqueous solution composition in a wide range of pH and Ga concentration.  相似文献   

9.
The effects of pH, ionic strength, competing ions and initial metal concentrations on the uptake behavior and mechanism of radioactive Ni(II) onto MnO2 was investigated using a combination of classical macroscopic methods and the extended X-ray absorption fine structure (EXAFS) spectroscopy technique. The results indicated that the uptake of Ni(II) on MnO2 is obviously dependent on pH but independent of ionic strength, which suggested that the uptake of Ni(II) onto MnO2 is attributed to an inner-sphere surface complex rather than an outer-sphere surface complex. EXAFS analysis shows that the hydrated Ni(II) is adsorbed through six-fold coordination with an average Ni–O interatomic distance of 2.04 ± 0.01 ?. It can be inferred from the EXAFS analysis that the inner-sphere surface complex of Ni(II) onto MnO2 is involved in both edge-sharing and corner-sharing linkages. Both the macroscopic uptake data and the molecular level evidence of Ni(II) surface speciation at the MnO2-water interfaces should be factored into better prediction of the bioavailability and mobility of Ni(II) in soil and water environment.  相似文献   

10.
Arsenate adsorption on amorphous (RuO(2)1.1H(2)O) and crystalline (RuO(2)) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was used to determine the local coordination environment of adsorbed arsenate. Additionally, pressure-jump (p-jump) relaxation spectroscopy was used to investigate the kinetics of arsenate adsorption/desorption on ruthenium oxides. Chemical relaxations resulting from the induced pressure change were monitored via electrical conductivity detection. EXAFS data were collected for two initial arsenate solution concentrations, 3 and 33 mM at pH 5. The collected spectra indicated a similar coordination environment for arsenate adsorbed to RuO(2)1.1H(2)O for both arsenate concentrations. In contrast the EXAFS spectra of RuO(2) indicated differences in the local coordination environments for the crystalline material with increasing arsenate concentration. Data analysis indicated that both mono- and bidentate surfaces complexes were present on both RuO(2)1.1H(2)O and RuO(2). Relaxation spectra from the pressure-jump experiments of both ruthenium oxides resulted in a double relaxation event. Based on the relaxation spectra, a two step reaction mechanism for arsenate adsorption is proposed resulting in the formation of a bidentate surface complex. Analysis of the kinetic and spectroscopic data suggested that while there were two relaxation events, arsenate adsorbed to ruthenium oxide surfaces through both mono- and bidentate surface complexes.  相似文献   

11.
用密度泛函和XANES计算研究Zn2+在水锰矿表面的吸附和沉淀   总被引:4,自引:0,他引:4  
用密度泛函理论(density function theory, DFT)和X射线近边结构(X-ray absorption near edge structure, XANES)模拟计算了不同酸度(pH = 7.0, 7.5 和 8.0)下Zn(II)在水锰矿表面的吸附. 优化的几何结构表明, 只有双边吸附方式的水解簇既能解释H+ 释放机制, 又能与扩展X射线吸收精细结构(extended X-ray absorption fine structure, EXAFS)实验键长值相吻合. 吸附能计算表明, 各种吸附方式的稳定性双边(DE)>双角(DC)>B型单边(SE-B)>A型单边(SE-A);水解能计算表明各种吸附态Zn2+ 均比溶液中水合锌离子易水解. 各种吸附簇模型的XANES计算谱未能与实验谱吻合, 即, 表面发生的并不是简单的吸附. pH=7.5和pH=8.0吸附样品的XANES实验谱与Zn5(OH)6(CO3)2的实验谱非常接近, 因此认为pH=7.5和pH=8.0下Zn(II)在水锰矿表面发生沉淀, Zn(II)是Zn—O八面体和Zn—O四面体的混合, 它们按类似Zn5(OH)6(CO3)2结构中的八面体和四面体排列方式排列. pH=7.0时, Zn(II)在水锰矿表面发生的主要是边连接方式的吸附.  相似文献   

12.
Zn(II) sorption onto Al and Si oxides was studied as a function of pH (5.1-7.52), sorption density, and ionic strength. This study was carried out to determine the role of the various reaction conditions and sorbent phases in Zn complexation at oxide surfaces. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to probe the Zn atomic environment at the metal oxide/aqueous interface. For both amorphous silica and high-surface-area gibbsite, Zn sorption kinetics were rapid and reached completion within 24 h. In contrast, Zn sorption on low-surface-area-gibbsite was much slower, taking nearly 800 h for a sorption plateau to be reached. In the case of silica, EXAFS revealed that Zn was in octahedral coordination with first-shell oxygen atoms up to a surface loading of approximately 1 micro molm(-2), changing to tetrahedral coordination as surface loading and pH increased. For the high-surface-area gibbsite system, the Znz.sbnd;O first-shell distance was intermediate between values for tetrahedral and octahedral coordination over all loading levels. Zn formed inner-sphere adsorption complexes on both silica and high-surface-area gibbsite over all reaction conditions. For Zn sorption on low-surface-area gibbsite, formation of Znz.sbnd;Al layered double hydroxide (LDH) occurred and was the cause for the observed slow Zn sorption kinetics. The highest pH sample (7.51) in the Zn-amorphous silica system resulted in the formation of an amorphous Zn(OH)(2) precipitate with tetrahedral coordination between Zn and O. Aging the reaction samples did not alter the Zn complex in any of the systems. The results of this study indicate the variability of Zn complexation at surfaces prevalent in soil and aquatic systems and the importance of combining macroscopic observations with methods capable of determining metal complex formation mechanisms.  相似文献   

13.
The adsorption of Ga(III) at the water-alpha-FeOOH (goethite) interface has been investigated by means of quantitative adsorption experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy, and surface complexation modeling. Under the conditions studied, pH range 3-11 and surface coverages of 0.9-3.2 micromol/m2, Ga(III) was found to adsorb strongly to alpha-FeOOH, and the surface species were more resistant toward hydrolysis and formation of soluble Ga(OH)4- than either solid gallium hydroxides or soluble polynuclear complexes. The EXAFS measurements revealed the presence of octahedral Ga(III) complexes at the water-alpha-FeOOH interface, with practically no structural variations as a function of pH or total gallium concentration. Analysis of the first coordination shell required an anharmonic model indicating a distorted geometry of the GaO6 octahedra, with mean Ga-O distances at 1.96-1.98 angstroms. A method based on the continuous Cauchy wavelet transforms (CCWT) was used to identify backscattering atoms in the higher coordination shells. This analysis indicated predominately Fe backscattering, and the quantitative data fitting resulted in three Ga-Fe paths at 3.05, 3.2, and 3.55 angstroms, which correspond to two edge-sharing and one corner-sharing linkage, respectively. The collective results from EXAFS spectroscopy showed that Ga(III) adsorbs to Fe equivalent sites at the surface alpha-FeOOH as an extension of the rows of Fe octahedra in the bulk structure. This interpretation was further corroborated by a Ga-Fe-Fe multiple scattering path at 6.13 angstroms. The quantitative adsorption and proton data were modeled using a surface complexation formalism based on a 1 pK(a) constant capacitance model. In agreement with the EXAFS results, the model obtained included one predominating surface complex with the stoichiometry [triple bond]FeOGa(OH)2(-0.5) and the stability constant log beta(intr.) = -2.55 +/- 0.04 ([triple bond]FeOH(-0.5) + Ga3+ + 2H2O <--> [triple bond]FeOGa(OH)2(-0.5) + 3H+).  相似文献   

14.
Zinc complexes of a new symmetric dinucleating ligand, N,N'-Bis[2-carboxybenzomethyl]-N,N'-Bis[carboxymethyl]-1,3-diaminopropan-2-ol (H5ccdp) with mixed donating groups, have been studied in the solid state as well as in solution. In methanol, the reaction of stoichiometric and substoichiometric amounts of Zn(ClO4)2 x 6H2O and the ligand H5ccdp, in the presence of K2CO3 or Et3N, afforded a mononuclear zinc complex, [Zn(H2O)6][Zn(H2ccdp)(H2O)2]2 x 12H2O (1). The solid state structure of 1 contains two units of the zinc-ligand anion, [Zn(H2ccdp)(H2O)2]-, and one [Zn(H2O)6]2+ counter cation. The Zn(II) center of the anion is in a distorted octahedral geometry. However, in methanol, the reaction of ZnSO4 x 7H2O and the ligand Hsccdp in the presence of NaOH afforded a unique micro6-sulfato hexanuclear zinc complex, Na6[Zn6(ccdp)3(micro6-SO4)](OH) x 10.5H2O (2). The structure of 2 contains a [ZnII6(micro6-SO4)] core unit which is held together by three heptadentate bridging ligands, ccdp5-. Three of the Zn(II) centers are in highly distorted square pyramidal geometry, the other three Zn(II) centers are in a distorted octahedral geometry.  相似文献   

15.
Migration of radioactive radium, 226Ra, in soil is an environmental concern, especially in areas adjacent to uranium processing facilities. Barium(II), as Ba2+, was used as a Ra analog and reacted with a Na-montmorillonite to obtain mechanistic insights into the interaction of Ra with soil matrices. The majority of sorbed Ba is associated with the permanently charged surface sites on the montmorillonite basal surface. This is indicated by the facts that (1) sorption of Ba(II) on montmorillonite is not highly sensitive to solution pH, although an increase of sorption was observed at higher pH values; and (2) displacement of sorbed Ba increased with increased NaNO3 concentration. As demonstrated by EXAFS, a small fraction of Ba also adsorbed on the montmorillonite edge, forming an inner-sphere surface complex through sharing of oxygen atom(s) from deprotonated –OH group of the Al octahedral layer. The EXAFS measured distances between Ba and O at the first shell, and Ba and Al of the second shell are 2.7–2.8 and 3.7–3.9 Å, respectively, consistent with the results from geometry of a inner-sphere complex at the edge site. Results from bulk experiments and spectroscopic analysis suggest a co-existence of outer- and inner-sphere surface complexes for Ba sorbed to the montmorillonite surface.  相似文献   

16.
The solution structure of Cu(II) in 4 M aqueous ammonia, [Cu(amm)](2+), was assessed using copper K-edge extended X-ray absorption fine structure (EXAFS) and Minuit XANes (MXAN) analyses. Tested structures included trigonal planar, planar and D2d -tetragonal, regular and distorted square pyramids, trigonal bipyramids, and Jahn-Teller distorted octahedra. Each approach converged to the same axially elongated square pyramid, 4 x Cu-Neq=2.00+/-0.02 A and 1 x Cu-Nax=2.16+/-0.02 A (EXAFS) or 2.20+/-0.07 A (MXAN), with strongly localized solvation shells. In the MXAN model, four equatorial ammonias averaged 13 degrees below the Cu(II) xy-plane, which was 0.45+/-0.1 A above the mean N4 plane. When the axial ligand equilibrium partial occupancies of about 0.65 ammonia and 0.35 water were included, EXAFS modeling found Cu-Lax distances of 2.16 and 2.31 A, respectively, reproducing the distances found in the crystal structures of [Cu(NH3)5](2+) and [Cu(NH3)4(H2O)](2+). A transverse axially localized solvent molecule was found at 2.8 A (EXAFS) or 3.1 A (MXAN). Six second-shell solvent molecules were also found at about 3.4+/-0.01 (EXAFS) or 3.8+/-0.2 A (MXAN). The structure of Cu(II) in 4 M pH 10 aqueous NH 3 may be notationally described as {[Cu(NH 3)4.62(H2O)0.38](solv)}(2+).6solv, solv=H2O, NH 3. The prominent shoulder and duplexed maximum of the rising K-edge XAS of [Cu(amm)](2+) primarily reflect the durable and well-organized solvation shells, not found around [Cu(H2O)5](2+), rather than two-electron shakedown transitions. Not accounting for solvent scattering thus may confound XAS-based estimates of metal-ligand covalency. [Cu(amm)](2+) continues the dissymmetry previously found for the solution structure of [Cu(H2O)5](2+), again contradicting the rack-bonding theory of blue copper proteins.  相似文献   

17.
The products of aqueous Zn(II) sorption on high-surface-area alumina powders (Linde-A) have been studied using XAFS spectroscopy as a function of Zn(II) sorption density (Gamma=0.2 to 3.3 μmol/m(2)) at pH values of 7.0 to 8.2. Over equilibration times of 15-111 h, we find that at low sorption densities (Gamma=0.2-1.1 μmol/m(2)) Zn(II) forms predominantly inner-sphere bidentate surface complexes with AlO(6) polyhedra, whereas at higher sorption densities (Gamma=1.5 to 3.5 μmol/m(2)), we find evidence for the formation of a mixed-metal Zn(II)-Al(III) hydroxide coprecipitate with a hydrotalcite-type local structure. These conclusions are based on an analysis of first- and second-neighbor interatomic distances derived from EXAFS spectra collected under ambient conditions on wet samples. At low sorption densities the sorption mechanism involves a transformation from six-coordinated Zn-hexaaquo solution complexes (with an average Zn-O distance of 2.07 ?) to four-coordinated surface complexes (with an average Zn-O distance of 1.97 ?) as described by the reaction identical withAl(OH(a))(OH(b))+Zn (H(2)O)(6)(2+)--> identical withAl(OH(a)') (OH(b)')Zn(OH(c)')(OH(d)'+4H(2)O+zH(+), where identical withAl(OH(a))(OH(b)) represents edge-sharing sites of Al(O,OH,OH(2))(6) octahedra to which Zn(O,OH,OH(2))(4) bonds in a bidentate fashion. The proton release consistent with this reaction (z=a-a'+b-b'+4-c'-d'), and with bond valence analysis falls in the range of 0 to 2 H(+)/Zn(II) when hydrolysis of the adsorbed Zn(II) complex is neglected. This interpretation suggests that proton release is likely a strong function of the coordination chemistry of the surface hydroxyl groups. At higher sorption densities (1.5 to 3.5 μmol/m(2)), a high-amplitude, second-shell feature in the Fourier transform of the EXAFS spectra indicates the formation of a three-dimensional mixed-metal coprecipitate, with a hydrotalcite-like local structure. Nitrate anions presumably satisfy the positive layer charge of the Al(III)-Zn(II) hydroxide layers in which the Zn/Al ratio falls in the range of 1 : 1 to 2 : 1. Our results for the higher Gamma-value sorption samples suggest that Zn-hydrotalcite-like phases may be a significant sink for Zn(II) in natural or catalytic systems containing soluble alumina compounds. Copyright 2000 Academic Press.  相似文献   

18.
The pH(pzc) values of several mechanical mixtures of amorphous hydrous oxides of iron (amorphous FeOOH) and manganese (delta-MnO2) have been determined using the solid addition method. While the pH(pzc) of delta-MnO2 remains almost unchanged, the corresponding value for amorphous FeOOH tends to increase with increased proportion of delta-MnO2 in the mixtures. The adsorption behavior of Co2+, Ni2+, Cu2+, and Zn2+ with respect to pH on a mechanical mixture of 70% delta-MnO2 and 30% amorphous FeOOH from 0.5 M NaCl and major ion sea water has been studied. Since delta-MnO2 is much more active adsorbent than amorphous FeOOH at pH below 6.5, the adsorption data on mixture have not only been normalized with respect to the mass of delta-MnO2 in the mixture, but also compared with adsorption data on delta-MnO2 alone. It is interesting to note that though each trace metal behaves in a different way from the other especially with respect to the nature of electrolyte medium, it is generally observed that the adsorption on the mixed oxide system is higher than that on delta-MnO2 alone under similar condition. It is also observed that adsorption in major ion sea water at a particular pH value is lower than in 0.5 M NaCl solution.  相似文献   

19.
Cu K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near-edge structure (MXAN) analyses were combined to evaluate the structure of the copper(II) imidazole complex ion in liquid aqueous solution. Both methods converged to the same square-pyramidal inner coordination sphere [Cu(Im)(4)L(ax)](2+) (L(ax) indeterminate) with four equatorial nitrogen atoms at EXAFS, 2.02 ± 0.01 ?, and MXAN, 1.99 ± 0.03 ?. A short-axial N/O scatterer (L(ax)) was found at 2.12 ± 0.02 ? (EXAFS) or 2.14 ± 0.06 ? (MXAN). A second but very weak axial Cu-N/O interaction was found at 2.9 ± 0.1 ? (EXAFS) or 3.0 ± 0.1 ? (MXAN). In the MXAN fits, only a square-pyramidal structural model successfully reproduced the doubled maximum of the rising K-edge X-ray absorption spectrum, specifically excluding an octahedral model. Both EXAFS and MXAN also found eight outlying oxygen scatterers at 4.2 ± 0.3 ? that contributed significant intensity over the entire spectral energy range. Two prominent rising K-edge shoulders at 8987.1 and 8990.5 eV were found to reflect multiple scattering from the 3.0 ? axial scatterer and the imidazole rings, respectively. In the MXAN fits, the imidazole rings took in-plane rotationally staggered positions about copper. The combined (EXAFS and MXAN) model for the unconstrained cupric imidazole complex ion in liquid aqueous solution is an axially elongated square-pyramidal core, with a weak nonbonded interaction at the second axial coordination position and a solvation shell of eight nearest-neighbor water molecules. This core square-pyramidal motif has persisted through [Cu(H(2)O)(5)](2+), [Cu(NH(3))(4)(NH(3),H(2)O)](2+), (1, 2) and now [Cu(Im)(4)L(ax))](2+) and appears to be the geometry preferred by unconstrained aqueous-phase copper(II) complex ions.  相似文献   

20.
Wu J  Hou H  Han H  Fan Y 《Inorganic chemistry》2007,46(19):7960-7970
With the motivation of searching for highly selective ferric ion sorbents, two open-framework and microporous materials, {[Pb7(HEDTP)2(H2O)] x 7H2O}n (1) and {[Zn2(H4EDTP)] x 2H2O}n (2) [H8EDTP = N,N,N',N'-ethylenediaminetetrakis(methylenephosphonic acid)], have been synthesized and structurally characterized. The structure of compound 1 results from the seven crystallographically different lead atoms that are bridged by two HEDTP(7-) ligands to yield a three-dimensional microporous framework with tunnels along the a and b axes. Compound 2 features a layer architecture built of square waves along the a axis. The layers are connected by hydrogen bonds between uncoordinated phosphonate oxygen atoms to form a three-dimensional supramolecular network, with one-dimensional tunnels along the a axis. Both compounds 1 and 2 exhibited high ion sorption and exchange capacities for millimolar concentrations of Fe(III). Specifically, when 0.01 g of 1 (or 2) was added to 5 mL of a 1 mM metallic chloride aqueous solution and the mixture was allowed to stand for 2 days at room temperature, compound 1 adsorbed nearly 100% of Fe(III) and compound 2 adsorbed 96.8% of Fe(III). They were also found to adsorb ferric ions selectively over other metal ions, such as Ca(II), Cr(II), Mn(II), Cu(II), Zn(II), Cd(II), etc. Their special ferric ion uptake capacities may be attributed to the cation exchange, coordination bonding, and electrostatic attraction between ferric ions and metal phosphonates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号