首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Two well‐ordered 2D ‐ hexagonal cerium (IV) and erbium (III) embedded functionalized mesoporous MCM ‐ 41(MCM‐41@Serine/Ce and MCM ‐ 41@Serine/Er) have been developed via functionalization of mesoporous MCM ‐ 41. The surface modification method has been used in the preparation of serine‐grafted MCM ‐ 41 and led to the development of MCM‐41@Serine. The reaction of MCM‐41@Serine with Ce (NH4)2(NO3)6·2H2O or ErCl3·6H2O in ethanol under reflux led to the organization of MCM‐41@Serine/Ce and MCM‐41@Serine/Er catalysts. The structures of these catalysts were determined using scanning electron microscopy, mapping, energy‐dispersive X‐ray spectroscopy, Fourier transform‐infrared, thermogravimetric analysis, X‐ray diffraction, inductively coupled plasma, and Brunauer–Emmett–Teller analysis. These MCM‐41@Serine/Ce and MCM‐41@Serine/Er catalysts show outstanding catalytic performance in sulfides oxidation and synthesis of 5‐substituted tetrazoles. These catalysts can be recycled for seven repeated reaction runs without showing a considerable decrease in catalytic performance.  相似文献   

2.
The liquid‐phase oxidation of diphenylmethane with tert‐butylhydroperoxide has been studied using vanadium‐containing MCM‐41 materials, which were prepared by direct hydrothermal (V‐MCM‐41) and wet impregnation (V/MCM‐41) methods. These catalysts were characterized in detail by ICP‐AES, N2‐sorption, XRD, FT‐IR, 29Si and 51V NMR, TPD of ammonia, TPR of hydrogen, and chemisorption of oxygen. Both series of catalyst show good catalytic results, which are attributed to their highly ordered mesoporous structure, large BET surface area as well as the presence of easily accessible vanadium‐oxygen species as active centers in the catalyst. Further, V‐MCM‐41 exhibit superior catalytic activity (based on turnover number) than V/MCM‐41 mainly due to well‐dispersed tetrahedral vanadium‐oxygen species with higher oxidation ability. The effect of reaction parameters, i.e., temperature, time, solvent, etc. were investigated. Catalyst recycling test reveals good stability with only slight extent of leaching during the reaction.  相似文献   

3.
The vapor‐phase reaction of citronellal (CTN) at 220 °C and atmospheric pressure has been studied using mesoporous molecular sieves and zeolites in a fixed‐bed reactor. The primary products included isopulegol (IPG), menthone, and pulegol with subsequent reactions to form cyclic hydrocarbons. The CTN conversion and the product selectivity depend on the acidity and the textural property of catalysts. Lewis and/or Brönsted acid sites are essential for catalyzing this reaction. An increase of SiO2/Al2O3 mol ratio diminishes the acid amount of all catalysts and enhances both the surface area and the structural order of MCM‐41. The catalytic activity follows the order of MCM‐41 > HZSM‐5 > Hβ > USY, in accordance with the relative total acid amount except that of MCM‐41. Despite its low acidity, Si‐MCM‐41 exhibits the best catalytic performance due to its uniform mesopores, large surface area and good stability; the CTN conversion and the IPG yield attain 91.9% and 58.6%, respectively, after at least 25 h time‐on‐stream.  相似文献   

4.
Ni‐loaded pure siliceous and aluminosilicate MCM‐41 (Ni/MCM‐41) and nickel‐loaded silica (15Ni/SiO2) were synthesized via wet impregnation and were characterized by various techniques. The H2 consumption in the TPR analysis was found to be proportional to the Ni amount in the calcined samples. After reduction the average Ni particle sizes of 15Ni/MCM‐41 and 15Ni/SiO2 were 9–12 and 16 nm, respectively, by means of XRD and TEM measurements. All catalysts owned weak and intermediate Lewis acid sites that increased slightly with increasing the Ni amount and the Al content. In the liquid phase hydrogenation of t,t,c‐1,5,9‐cyclododecatriene over Ni/MCM‐41, the catalytic activity was parallel to the Ni content and enhanced slightly with the acid amount of the catalysts. Consequently, it was proposed that the Ni metallic sites contributed the major effect to the catalytic activity while the Lewis acid sites promoted a small but significant influence on the catalytic performance. It is noteworthy that all 15Ni/MCM‐41 catalysts exhibited remarkably higher activity than that of the conventional 15Ni/SiO2 catalyst.  相似文献   

5.
The catalytic efficiency of ammonium dihydrogenphosphate was evaluated in the two heterogeneous forms of NH4H2PO4/MCM‐48 and NH4H2PO4/MCM‐41, as mesoporous catalysts, in the solvent free synthesis of 3,4‐dihydropyrimidin‐2(1H)‐ones through one‐pot three‐component condensation of ethyl acetoacetate, an aryl aldehyde and urea. Different reaction parameters including catalytic efficacy, solvent effect, and urea concentration are considered.  相似文献   

6.
The synthesis and characterization of two new capped silica mesoporous nanoparticles for controlled delivery purposes are described. Capped hybrid systems consist of MCM‐41 nanoparticles functionalized on the outer surface with polymer ε‐poly‐L ‐lysine by two different anchoring strategies. In both cases, nanoparticles were loaded with model dye molecule [Ru(bipy)3]2+. An anchoring strategy involved the random formation of urea bonds by the treatment of propyl isocyanate‐functionalized MCM‐41 nanoparticles with the lysine amino groups located on the ε‐poly‐L ‐lysine backbone (solid Ru‐rLys‐S1 ). The second strategy involved a specific attachment through the carboxyl terminus of the polypeptide with azidopropyl‐functionalized MCM‐41 nanoparticles (solid Ru‐tLys‐S1 ). Once synthesized, both nanoparticles showed a nearly zero cargo release in water due to the coverage of the nanoparticle surface by polymer ε‐poly‐L ‐lysine. In contrast, a remarkable payload delivery was observed in the presence of proteases due to the hydrolysis of the polymer’s amide bonds. Once chemically characterized, studies of the viability and the lysosomal enzyme‐controlled release of the dye in intracellular media were carried out. Finally, the possibility of using these materials as drug‐delivery systems was tested by preparing the corresponding ε‐poly‐L ‐lysine capped mesoporous silica nanoparticles loaded with cytotoxic drug camptothecin (CPT), CPT‐rLys‐S1 and CPT‐tLys‐S1 . Cellular uptake and cell‐death induction were studied. The efficiency of both nanoparticles as new potential platforms for cancer treatment was demonstrated.  相似文献   

7.
In the present work, we report synthesis of new zirconium complex supported on mesoporous silica by anchoring of adenine on the wall of functionalized MCM‐41, then reacted with ZrOCl2. The resultant MCM‐41‐Adenine‐Zr was characterized by FT‐IR, XRD, TEM, SEM, TGA, EDX, ICP and BET techniques. It was exhibited that the MCM‐41‐Adenine‐Zr can be used as an efficient and thermally stable nanocatalyst for the oxidation of sulfides, oxidative coupling of thiols and synthesis of sulfides. Moreover, this heterogeneous catalyst can be easily recovered from the reaction mixture by simple filtration and reused for several consecutive cycles without noticeable change in its catalytic activity.  相似文献   

8.
The immobilization of copper complexes by covalent anchoring of the ligand on the surface of mesoporous MCM‐41 has been described. Bis[2‐(phenylthio)benzylidene]‐1,2‐ethylenediamine as a new N2S2 donor salen‐type ligand was covalently anchored onto nanopores of MCM‐41 coordinated with copper (I) halide. The organic–inorganic hybrid material was achieved readily using 3‐mercaptopropyltrimethoxysilane as a reactive surface modifier. 2‐Nitrobenzaldehyde was reacted smoothly with the thiol moieties in order to form functionalized nanoporous silica with carbaldehyde groups. The resulting supported organic moieties were converted to thiosalen ligand and coordinated with CuX (X = CN, Cl, Br, I). Characterization of the heterogeneous catalyst by X‐ray diffraction, N2 sorption, FT‐IR, diffuse reflectance UV‐visible and TGA techniques indicated successful grafting of the copper complex inside the nano‐channels of MCM‐41. The heterogenized catalyst was evaluated by the Mannich condensation reaction of aldehydes, amines and alkynes. In this reaction, the corresponding propargylamines were obtained as single products in good to excellent yields. Factors such as reaction temperature, solvent, catalyst loading, leaching and reusability of the catalyst also were discussed. The use of MCM‐41 as support permits an easier separation and recycles with only a marginal decrease in reactivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Here we demonstrate for the first time the preparation of a triflic acid (TFA)‐functionalized mesoporous nanocage with tunable pore diameters by the wet impregnation method. The obtained materials have been unambiguously characterized by XRD, N2 adsorption, FTIR spectroscopy, and NH3 temperature‐programmed desorption (TPD). From the characterization results, it has been found that the TFA molecules are firmly anchored on the surface of the mesoporous supports without affecting their acidity. We also demonstrate the effect of the pore and cage diameter of the KIT‐5 supports on the loading of TFA molecules inside the pore channels. It has been found that the total acidity of the materials increases with an increase in the TFA loading on the support, whereas the acidity of the materials decreases with an increase in the pore diameter of the support. The acidity of the TFA‐functionalized mesoporous nanocages is much higher than that of the zeolites and metal‐substituted mesoporous acidic catalysts. The TFA‐functionalized materials have also been employed as the catalysts for the synthesis of 7‐hydroxy‐4‐methylcoumarin by means of the Pechmann reaction under solvent‐free conditions. It has been found that the catalytic activity of the TFA‐functionalized KIT‐5 is much higher than that of zeolites and metal‐substituted mesoporous catalytic materials in the synthesis of coumarin derivatives. The stability of the catalyst is extremely good and can be reused several times without much loss of activity in the above reaction.  相似文献   

10.
《先进技术聚合物》2018,29(2):874-883
The concept of mixed matrix membrane comprising dispersed inorganic fillers into a polymer media has revealed appealing to tune the gas separation performance. In this work, the membranes were prepared by incorporation of mesoporous silica into polyurethane (PU). Mesoporous silica particles with different pore size and structures, MCM‐41, cubic MCM‐48 and SBA‐16, were synthesized by templating method and functionalized with 3‐aminopropyltriethoxysilane (APTES). High porosity and aminated surface of the mesoporous silica enhance the adhesion of the particles to the PU matrix. The SEM and FTIR results showed strong interactions between the particles and the PU chains. Moreover, the thermal stability of the hybrid PUs improved compared to the pure polymer. Gas transport properties of the membranes were measured for pure CO2, CH4, O2, and N2 gases at 10 bar and 25°C. The results showed that the gas permeabilities enhanced with increasing in the loading of modified mesoporous silica particles. High porosity and amine‐functionalized particles render opportunities to enhance the gas diffusivity and solubility through the membranes. The enhanced gas transport properties of the mixed matrix membranes reveal the advantages of mesoporous silica to improve the gas permeability (CO2 permeability up to ~70) without scarifying the gas selectivity (α(CO2/N2)~ 30 for 5 wt% SBA‐16 content).  相似文献   

11.
n‐Dodecyltriethoxysilane (DTEOS) modified NaHSO4/MCM‐41 catalysts (silanized catalysts) were synthesized by different impregnation sequences and evaluated in the liquid‐phase dehydration of castor oil. The samples were evaluated by X‐ray diffraction, nitrogen adsorption‐desorption, SEM, TEM, FT‐IR spectroscopy, XPS, 29Si MAS NMR spectroscopy, contact angle measurements, NH3‐TPD, and pyridine‐FT‐IR spectroscopy. The analyses demonstrated that silanization enhanced the hydrophobicity of the catalysts, and the impregnation sequence of silanized catalysts had a significant effect on the NaHSO4 dispersion, surface area, acid distribution, and hydrophobicity of the silanized catalysts. The catalytic activity of the silanized catalysts was much higher than that of NaHSO4/MCM‐41. Among the silanized catalysts, the catalyst prepared by simultaneous impregnation with DTEOS and NaHSO4 showed the highest iodine value of 141.8 [g(I2) per 100 g] and lowest hydroxyl value of 11.3 [mg(KOH) · g–1].  相似文献   

12.
Solid catalysts consisting of polyoxometalates (POM) namely phosphotungstic acid H3PW12O40 (HPW) supported on a mesoporous sieve MCM‐41 have been prepared and characterized by FT‐IR, X‐ray diffraction, nitrogen adsorption and high resolution transmission electron microscope (HRTEM). The HPW/MCM‐41 with different HPW loadings from 10 to 60 wt% possess large specific surface area and rather uniform mesopores. Keggin structure of HPW retains on the prepared composite catalysts. The photocatalytic performance of HPW/MCM‐41 was examined by degradation of a durable pesticide imidacloprid. It is found that the prepared photocatalysts exhibit high activity under irradiation of 365 nm monochromatic light. For 50 mL of imidacloprid (10 mg/L), conversion of imidacloprid using 20 mg of HPW/MCM‐41 with 50 wt% loading level and calcined at 300°C reaches 58.0% after 5 h irradiation.  相似文献   

13.
The cerium‐containing MCM‐41 (Ce‐MCM‐41) has been synthesized by direct hydrothermal method. The low‐angle XRD patterns revealed the typical five major peaks of MCM‐41 type hexagonal structures. The interplanar spacing d100 = 38.4 Å was obtained that can be indexed on a hexagonal unit cell parameter with ao = 44.3 Å which was larger than that of pure siliceous MCM‐41 (Si‐MCM‐41). Transmission electron micrograph shows the regular hexagonal array of uniform channel characteristics of MCM‐41. The BET surface area of Ce‐MCM‐41 was 840 m2/g, which is much reduced as compared to that of Si‐MCM‐41, with the pore size of 26.9 Å and mesopore volume of 0.78 cm3/g were measured by nitrogen adsorption‐desorption isotherm at 77 K. Along with the results, the synthesized Ce‐MCM‐41 exhibited a well‐ordered MCM‐41‐type mesoporous structure with the incorporation of cerium. Using Ce‐MCM‐41 as a support, the Rh (0.5 wt%) catalyst exhibited very high activity for the NO/CO reactions.  相似文献   

14.
Palladium chloride was grafted to amino‐functionalized MCM‐41 to prepare heterogeneous catalysts. XRD, N2 adsorption–desorption isotherms, IR, 13C and 29Si cross‐polarization magic‐angle spinning NMR spectroscopy and XPS techniques were employed to characterize the catalytic materials. The heterogeneous palladium catalyst exhibited excellent catalytic activity for the Heck vinylation of iodobenzene with methyl acrylate, giving 92% yield of methyl cinnamate in the presence of N‐methylpyrrolidone (NMP) and triethylamine (Et3N). The stability of the heterogeneous catalyst was also studied in detail. The catalytic tests showed that the palladium leaching correlated to solvent, base and palladium loading. The heterogeneous catalyst exhibited excellent stability towards loss of activity and palladium leaching was not observed during six recycles in the presence of toluene and Na2CO3. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Ligand N2,N6‐bis(2‐hydroxyethyl)pyridine‐2,6‐dicarboxamide (L=BHPC) was synthesized and used to construct lanthanide‐based mesoporous material Eu‐L‐MCM‐41. In the structure of resulting Eu‐L‐MCM‐41, Eu3+ was chelated by BHPC, and the Eu‐L complexes were anchored into the forming MCM‐41 host by the reaction between the hydroxyl group and active Si‐OH. The mesoporous material Eu‐L‐MCM‐41 was characterized by UV, IR, small‐angle X‐ray diffraction (SAXRD) patterns, nitrogen adsorption/desorption isotherms, TGA and fluorescence spectra. The results indicate that ligand and Eu3+ have been introduced into the MCM‐41 host, and Eu‐L‐MCM‐41 exhibits characteristic luminescence of Eu3+.  相似文献   

16.
Zirconium oxide complex‐functionalized mesoporous MCM‐41 (Zr‐oxide@MCM‐41) as an efficient and reusable catalyst is reported for the oxidation of sulfides into sulfoxides using hydrogen peroxide (H2O2) as the oxidant, with short reaction times in good to excellent yields at room temperature under solvent‐free conditions. Also, a simple and efficient method is reported for the oxidative coupling of thiols into corresponding disulfides in good to high yields using H2O2 as oxidant in the presence of Zr‐oxide@MCM‐41 as recoverable catalyst in ethanol at room temperature. A series of sulfides and thiols possessing functional groups was successfully converted into corresponding products. After completion of reactions the catalyst was easily separated with simple filtration from the reaction mixture and reused for several consecutive runs without significant loss of catalytic efficiency. The mesoporous catalyst was characterized using Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller surface area measurements, X‐ray diffraction, transmission and scanning electron microscopies, energy‐dispersive X‐ray spectroscopy and thermogravimetric analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Hybrid mesoporous periodic organosilicas (Ph‐PMOs) with phenylene moieties embedded inside the silica matrix were used as a heterogeneous catalyst for the Ullmann coupling reaction in water. XRD, N2 sorption, TEM, and solid‐state NMR spectroscopy reveal that mesoporous Ph‐PMO supports and Pd/Ph‐PMO catalysts have highly ordered 2D hexagonal mesostructures and covalently bonded organic–inorganic (all Si atoms bonded with carbon) hybrid frameworks. In the Ullmann coupling reaction of iodobenzene in water, the yield of biphenyl was 94 %, 34 %, 74 % and for palladium‐supported Ph‐PMO, pure silica (MCM‐41), and phenyl‐group‐modified Ph‐MCM‐41 catalysts, respectively. The selectivity toward biphenyl reached 91 % for the coupling of boromobenzene on the Pd/Ph‐PMO catalyst. This value is much higher than that for Pd/Ph‐MCM‐41 (19 %) and Pd/MCM‐41 (0 %), although the conversion of bromobenzene for these two catalysts is similar to that for Pd/Ph‐PMO. The large difference in selectivity can be attributed to surface hydrophobicity, which was evaluated by the adsorption isotherms of water and toluene. Ph‐PMO has the most hydrophobic surface, and in turn selectively adsorbs the reactant haloaryls from aqueous solution. Water transfer inside the mesochannels is thus restricted, and the coupling reaction of bromobenzene is improved.  相似文献   

18.
The heterogenization of homogeneous metal complex catalysts has attracted great attention. The encapsulation of metal complexes into nanochannels of mesoporous materials is achieved by coating metal oxides at/near the pore entrance by diffusion‐limited atomic layer deposition (ALD) to produce a hollow plug. The pore size of the hollow plug is precisely controlled on the sub‐nanometer scale by the number of ALD cycles to fit various metal complexes with different molecular sizes. Typically, Co or Ti complexes are successfully encapsulated into the nanochannels of SBA‐15, SBA‐16, and MCM‐41. The encapsulated Co and Ti catalysts show excellent catalytic activity and reusability in the hydrolytic kinetic resolution of epoxides and asymmetric cyanosilylation of carbonyl compounds, respectively. This ALD‐assisted encapsulation method can be extended to the encapsulation of other homogeneous catalysts into different mesoporous materials for various heterogeneous reactions.  相似文献   

19.
Cu-incorporated ordered hexagonal mesoporous silicates (Cu-MCM-41) with spheres-within-a-sphere hollow structure have been synthesized using thermoreversible polymer hydrogel methylcellulose (MC) and cationic surfactant as co-templates, which have been characterized by scanning electron micrograph (SEM), X-ray diffraction (XRD), transmission electron micrograph (TEM), and N2 adsorption-desorption isotherms. The obtained results indicate that the morphology of Cu-incorporated MCM-41 materials is "spheres-within-a-sphere" hollow structure, which is very similar to that of the alveolus. In benzene hydroxylation with H2O2, the hollow spheres show much higher catalytic activity than particles of Cu-MCM-41.  相似文献   

20.
Amino-functionalized MCM-41 has been prepared by grafting amino containing functional groups onto mesoporous silicate MCM-41 and characterized by powder X-ray diffraction, N2 adsorption/desorption measurement, SEM, FT-IR, thermogravimetry and elemental analysis to confirm the ordered mesoporous structure and the functionalization of the amino groups. Sorption behavior for 18 metal ions on this sorbent has been studied and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号