首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Self‐complementarity is a useful concept in supramolecular chemistry, molecular biology and polymeric systems. Two resorcinarene tetrabenzoxazines decorated with four oxalamide groups were synthesized and characterized. The oxalamide groups possessed self‐complementary hydrogen bonding sites between the carbonyls and amide groups. The self‐complementary nature of the oxalamide groups resulted in self‐included dimeric assemblies. The hydrogen bonding interactions within the tetrabenzoxazines gave rise to the formation of dimers, which were confirmed by single‐crystal X‐ray diffractions analysis and supported by NMR spectroscopy and mass spectrometry. The self‐included dimers were connected by numerous and strong intermolecular N?H???O and C?H???O hydrogen bonds supplemented with C?H???π interactions, forming one‐dimensional polymers, which were then further linked into three‐dimensional networks.  相似文献   

2.
A novel metal‐induced template for the self‐assembly of two independent phosphane ligands by means of unprecedented multiple noncovalent interactions (classical hydrogen bond, weak hydrogen bond, metal coordination, π‐stacking interaction) was developed and investigated. Our results address the importance and capability of weak hydrogen bonds (WHBs) as important attractive interactions in self‐assembling processes based on molecular recognition. Together with a classical hydrogen bond, WHBs may serve as promoters for the specific self‐assembly of complementary monomeric phosphane ligands into supramolecular hybrid structures. The formation of an intermolecular C? H???N hydrogen bond and its persistence in the solid state and in solution was studied by X‐ray crystal analysis, mass spectrometry and NMR spectroscopy analysis. Further evidence was demonstrated by DFT calculations, which gave specific geometric parameters for the proposed conformations and allowed us to estimate the energy involved in the hydrogen bonds that are responsible for the molecular recognition process. The presented template can be regarded as a new type of self‐assembled β‐turn mimic or supramolecular pseudo amino acid for the nucleation of β‐sheet structures when attached to oligopeptides.  相似文献   

3.
Construction of single‐component supramolecular triangle and unprecedented spontaneous resolution of pairs of intertwined supramolecular 31‐ and 32‐double helices by the self‐assembly of achiral 2‐(iodoethynyl)pyridine and its derivatives have been achieved through intermolecular ethynyl C?I????N halogen bonds in the crystalline state. Fine‐tuning of the molecular structure of the achiral monomer and choice of solvents for crystallization have a dominant effect on the resultant supramolecular architectures.  相似文献   

4.
Co‐crystallisation of, in particular, 4‐iodotetrafluorophenol with a series of secondary and tertiary cyclic amines results in deprotonation of the phenol and formation of the corresponding ammonium phenate. Careful examination of the X‐ray single‐crystal structures shows that the phenate anion develops a C?O double bond and that the C?C bond lengths in the ring suggest a Meissenheimer‐like delocalisation. This delocalisation is supported by the geometry of the phenate anion optimised at the MP2(Full) level of theory within the aug‐cc‐pVDZ basis (aug‐cc‐pVDZ‐PP on I) and by natural bond orbital (NBO) analyses. With sp2 hybridisation at the phenate oxygen atom, there is strong preference for the formation of two non‐covalent interactions with the oxygen sp2 lone pairs and, in the case of secondary amines, this occurs through hydrogen bonding to the ammonium hydrogen atoms. However, where tertiary amines are concerned, there are insufficient hydrogen atoms available and so an electrophilic iodine atom from a neighbouring 4‐iodotetrafluorophenate group forms an I???O halogen bond to give the second interaction. However, in some co‐crystals with secondary amines, it is also found that in addition to the two hydrogen bonds forming with the phenate oxygen sp2 lone pairs, there is an additional intermolecular I???O halogen bond in which the electrophilic iodine atom interacts with the C?O π‐system. All attempts to reproduce this behaviour with 4‐bromotetrafluorophenol were unsuccessful. These structural motifs are significant as they reproduce extremely well, in low‐molar‐mass synthetic systems, motifs found by Ho and co‐workers when examining halogen‐bonding interactions in biological systems. The analogy is cemented through the structures of co‐crystals of 1,4‐diiodotetrafluorobenzene with acetamide and with N‐methylbenzamide, which, as designed models, demonstrate the orthogonality of hydrogen and halogen bonding proposed in Ho’s biological study.  相似文献   

5.
We report supramolecular AB diblock copolymers comprised of well‐defined telechelic building blocks. Helical motifs, formed via reversible addition‐fragmentation chain‐transfer (RAFT) or anionic polymerization, are assembled with coil‐forming and sheet‐featuring blocks obtained via atom‐transfer radical polymerization (ATRP) or ring‐opening metathesis polymerization (ROMP). Interpolymer hydrogen bonding or metal‐coordination achieves dynamic diblock architectures featuring hybrid topologies of coils, helices, and/or π‐stacked sheets that, on a basic level, mimic protein structural motifs in fully synthetic systems. The intrinsic properties of each block (e.g., circular dichroism and fluorescence) remain unaffected in the wake of self‐assembly. This strategy to develop complex synthetic polymer scaffolds from functional building blocks is significant in a field striving to produce architectures reminiscent of biosynthesis, yet fully synthetic in nature. This is the first plug‐and‐play approach to fabricate hybrid π‐sheet/helix, π‐sheet/coil, and helix/coil architectures via directional self‐assembly.  相似文献   

6.
A new, highly adaptable type of phosphinamide‐based hydrogen bonding is representatively demonstrated in π‐conjugated phosphole materials. The rotational flexibility of these intermolecular P=O?H?N hydrogen bonds is demonstrated by X‐ray crystallography and variable‐concentration NMR spectroscopy. In addition to crystalline compounds, phosphinamide hydrogen bonding was successfully introduced into the self‐assembly of soft crystals, liquid crystals, and organogels, thus highlighting the high general value of this type of interaction for the formation of organic soft materials.  相似文献   

7.
Structural studies on the polymorphs of the organoselenium antioxidant ebselen and its derivative show the potential of organic selenium to form unusually short Se???O chalcogen bonds that lead to conserved supramolecular recognition units. Se???O interactions observed in these polymorphs are the shortest such chalcogen bonds known for organoselenium compounds. The FTIR spectral evolution characteristics of this interaction from solution state to solid crystalline state further validates the robustness of this class of supramolecular recognition units. The strength and electronic nature of the Se???O chalcogen bonds were explored using high‐resolution X‐ray charge density analysis and atons‐in‐molecules (AIM) theoretical analysis. A charge density study unravels the strong electrostatic nature of Se???O chalcogen bonding and soft‐metal‐like behavior of organoselenium. An analysis of the charge density around Se?N and Se?C covalent bonds in conjunction with the Se???O chalcogen bonding modes in ebselen and its analogues provides insights into the mechanism of drug action in this class of organoselenium antioxidants. The potential role of the intermolecular Se???O chalcogen bonding in forming the intermediate supramolecular assembly that leads to the bond cleavage mechanism has been proposed in terms of electron density topological parameters in a series of molecular complexes of ebselen with reactive oxygen species (ROS).  相似文献   

8.
Demonstrated here is a supramolecular approach to fabricate highly ordered monolayered hydrogen‐ and halogen‐bonded graphyne‐like two‐dimensional (2D) materials from triethynyltriazine derivatives on Au(111) and Ag(111). The 2D networks are stabilized by N???H?C(sp) bonds and N???Br?C(sp) bonds to the triazine core. The structural properties and the binding energies of the supramolecular graphynes have been investigated by scanning tunneling microscopy in combination with density‐functional theory calculations. It is revealed that the N???Br?C(sp) bonds lead to significantly stronger bonded networks compared to the hydrogen‐bonded networks. A systematic analysis of the binding energies of triethynyltriazine and triethynylbenzene derivatives further demonstrates that the X3‐synthon, which is commonly observed for bromobenzene derivatives, is weaker than the X6‐synthon for our bromotriethynyl derivatives.  相似文献   

9.
Biological function arises by the assembly of individual biomolecular modules into large aggregations or highly complex architectures. A similar strategy is adopted in supramolecular chemistry to assemble complex and highly ordered structures with advanced functions from simple components. Here we report a series of diamond‐like supramolecular frameworks featuring mesoporous cavities, which are assembled from metal‐imidazolate coordination cages and various anions. Small components (metal ions, amines, aldehydes, and anions) are assembled into the hierarchical complex structures through multiple interactions including covalent bonds, dative bonds, and weak C? H???X (X=O, F, and π) hydrogen bonds. The mesoporous cavities are large enough to trap organic dye molecules, coordination cages, and vitamin B12. The study is expected to inspire new types of crystalline supramolecular framework materials based on coordination motifs and inorganic ions.  相似文献   

10.
The competition between hydrogen‐ and halogen‐bonding interactions in complexes of 5‐halogenated 1‐methyluracil (XmU; X = F, Cl, Br, I, or At) with one or two water molecules in the binding region between C5‐X and C4?O4 is investigated with M06‐2X/6‐31+G(d). In the singly‐hydrated systems, the water molecule forms a hydrogen bond with C4?O4 for all halogens, whereas structures with a halogen bond between the water oxygen and C5‐X exist only for X = Br, I, and At. Structures with two waters forming a bridge between C4?O and C5‐X (through hydrogen‐ and halogen‐bonding interactions) exist for all halogens except F. The absence of a halogen‐bonded structure in singly‐hydrated ClmU is therefore attributed to the competing hydrogen‐bonding interaction with C4?O4. The halogen‐bond angle in the doubly‐hydrated structures (150–160°) is far from the expected linearity of halogen bonds, indicating that significantly non‐linear halogen bonds may exist in complex environments with competing interactions. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
N‐Centred benzene‐1,3,5‐tricarboxamides (N‐BTAs) composed of chiral and achiral alkyl substituents were synthesised and their solid‐state behaviour and self‐assembly in dilute alkane solutions were investigated. A combination of differential scanning calorimetry (DSC), polarisation optical microscopy (POM) and X‐ray diffraction revealed that the chiral N‐BTA derivatives with branched 3,7‐dimethyloctanoyl chains were liquid crystalline and the mesophase was assigned as Colho. In contrast, N‐BTA derivatives with linear tetradecanoyl or octanoyl chains lacked a mesophase and were obtained as crystalline compounds. Variable‐temperature infrared spectroscopy showed the presence of threefold, intermolecular hydrogen bonding between neighbouring molecules in the mesophase of the chiral N‐BTAs. In the crystalline state at room temperature a more complicated packing between the molecules was observed. Ultraviolet and circular dichroism spectroscopy on dilute solutions of N‐BTAs revealed a cooperative self‐assembly behaviour of the N‐BTA molecules into supramolecular polymers with preferred helicity when chiral alkyl chains were present. Both the sergeants‐and‐soldiers as well as the majority‐rules principles were operative in stacks of N‐BTAs. In fact, the self‐assembly of N‐BTAs resembles closely that of their carbonyl (C?O)‐centred counterparts, with the exception that aggregation is weaker and amplification of chirality is less pronounced. The differences in the self‐assembly of N‐ and C?O‐BTAs were analysed by density functional theory (DFT) calculations. These reveal a substantially lower interaction energy between the monomeric units in the supramolecular polymers of N‐BTAs. The lower interaction energy is due to the higher energy penalty for rotation around the Ph? NH bond compared to the Ph? CO bond and the diminished magnitude of dipole–dipole interactions. Finally, we observed that mixed stacks are formed in dilute solution when mixing N‐BTAs and C?O BTAs.  相似文献   

12.
《中国化学会会志》2017,64(2):143-151
Studying the self‐assembly of uracil derivatives has great importance for biochemistry and nanotechnology. For example, modification of the sorbent surfaces by 5‐hydroxy‐6‐methyluracil (HMU ) enhances their adsorption activity. It is assumed that these changes are caused by the self‐assembly of the network‐like supramolecular associates of the uracil derivative on the sorbent surface. In the present work, the relative stabilities of 15 hydrogen‐bonded dimers HMU have been studied by the TPSSh /TZVP density functional theory method and the strengths of the noncovalent interactions analyzed in terms of the reduced density gradient and natural bond orbital approaches. It was found that the symmetric dimer stabilized by two intermolecular hydrogen bonds N1 –H∙∙∙O–C2 (dimer 1‐1) is the most stable. This suggests that the self‐assembly of HMU should occur through the intermediate formation of the dimer 1‐1. The results may be useful for understanding the processes of self‐assembly of the uracil derivatives and the rationalized design of the uracil‐based supramolecular structures with specific properties.  相似文献   

13.
A family of 16 isomolecular salts (3‐XpyH)2[MX′4] (3‐XpyH=3‐halopyridinium; M=Co, Zn; X=(F), Cl, Br, (I); X′=Cl, Br, I) each containing rigid organic cations and tetrahedral halometallate anions has been prepared and characterized by X‐ray single crystal and/or powder diffraction. Their crystal structures reflect the competition and cooperation between non‐covalent interactions: N? H???X′? M hydrogen bonds, C? X???X′? M halogen bonds and π–π stacking. The latter are essentially unchanged in strength across the series, but both halogen bonds and hydrogen bonds are modified in strength upon changing the halogens involved. Changing the organic halogen (X) from F to I strengthens the C? X???X′? M halogen bonds, whereas an analogous change of the inorganic halogen (X′) weakens both halogen bonds and N? H???X′? M hydrogen bonds. By so tuning the strength of the putative halogen bonds from repulsive to weak to moderately strong attractive interactions, the hierarchy of the interactions has been modified rationally leading to systematic changes in crystal packing. Three classes of crystal structure are obtained. In type A (C? F???X′? M) halogen bonds are absent. The structure is directed by N? H???X′? M hydrogen bonds and π‐stacking interactions. In type B structures, involving small organic halogens (X) and large inorganic halogens (X′), long (weak) C? X???X′? M interactions are observed with type I halogen–halogen interaction geometries (C? X???X′ ≈ X???X′? M ≈155°), but hydrogen bonds still dominate. Thus, minor but quite significant perturbations from the type A structure arise. In type C, involving larger organic halogens (X) and smaller inorganic halogens (X′), stronger halogen bonds are formed with a type II halogen–halogen interaction geometry (C? X???X′ ≈180°; X???X′? M ≈110°) that is electrostatically attractive. The halogen bonds play a major role alongside hydrogen bonds in directing the type C structures, which as a result are quite different from type A and B.  相似文献   

14.
The precise synthesis and variation in the thermoresponsive property based on the supramolecular assembly of a novel urea end‐functionalized poly(N‐isopropylacrylamide) (PNIPAM) were studied. A series of PNIPAMs with different diphenylurea groups at the chain end (X? Ph? NH? CO? NH? Ph? trz? PNIPAM: X = H, OCH3, CH3, NO2, Cl, and CF3) were synthesized by using a combination of the atom transfer radical polymerization and the copper(I)‐catalyzed azide‐alkyne cycloaddition. The cloud point of the obtained polymers depended on the hydrogen‐bonding ability of the introduced urea group. The 1H NMR measurement suggested that the obtained PNIPAM assembled in water via the intermolecular hydrogen bonding by the terminal urea group. From the dynamic light scattering and transmission electron microscopy measurements, the aggregated nanoparticles of the resulting polymer were directly observed in water at a temperature below its cloud point. The hydrogen‐bonding property of the chain end urea group was concluded to be involved in the aggregation of the PNIPAM in water, leading to the variation in its cloud point. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6259–6268, 2009  相似文献   

15.
Binding of novel biphene[n]arene hosts to antiaromatic 7,7,8,8‐tetracyanoquinodimethane (TCNQ) are investigated by DFT. Biphene[4]arene favors the inclusion complex through noncovalent interactions, such as hydrogen bonding, π–π stacking, C?H???π, and C?H???H?C dihydrogen bonding. Donor–acceptor complexation renders aromatic character to the guest through charge transfer. The formation of TCNQ anionic radicals through supramolecular π stacking significantly influences its chemical and photophysical behavior. Electron density reorganization consequent to encapsulation of TCNQ reflects in the shift of characteristic vibrations in the IR spectra. The accompanying aromaticities arising from the induced ring currents are analyzed by employing nucleus‐independent chemical shifts based profiles.  相似文献   

16.
We report the self‐assembly of a new family of hydrophobic, bis(pyridyl) PtII complexes featuring an extended oligophenyleneethynylene‐derived π‐surface appended with six long (dodecyloxy ( 2 )) or short (methoxy ( 3 )) side groups. Complex 2 , containing dodecyloxy chains, forms fibrous assemblies with a slipped arrangement of the monomer units (dPt???Pt≈14 Å) in both nonpolar solvents and the solid state. Dispersion‐corrected PM6 calculations suggest that this organization is driven by cooperative π–π, C?H???Cl and π–Pt interactions, which is supported by EXAFS and 2D NMR spectroscopic analysis. In contrast, nearly parallel π‐stacks (dPt???Pt≈4.4 Å) stabilized by multiple π–π and C?H???Cl contacts are obtained in the crystalline state for 3 lacking long side chains, as shown by X‐ray analysis and PM6 calculations. Our results reveal not only the key role of alkyl chain length in controlling self‐assembly modes but also show the relevance of Pt‐bound chlorine ligands as new supramolecular synthons.  相似文献   

17.
The self‐assembly of higher‐order anion helicates in solution remains an elusive goal. Herein, we present the first triple helicate to encapsulate iodide in organic and aqueous media as well as the solid state. The triple helicate self‐assembles from three tricationic arylethynyl strands and resembles a tubular anion channel lined with nine halogen bond donors. Eight strong iodine???iodide halogen bonds and numerous buried π‐surfaces endow the triplex with remarkable stability, even at elevated temperatures. We suggest that the natural rise of a single‐strand helix renders its linear halogen‐bond donors non‐convergent. Thus, the stringent linearity of halogen bonding is a powerful tool for the synthesis of multi‐strand anion helicates.  相似文献   

18.
A hydrogen bond of the type C?H???X (X=O or N) is known to influence the structure and function of chemical and biological systems in solution. C?H???O hydrogen bonding in solution has been extensively studied, both experimentally and computationally, whereas the equivalent thermodynamic parameters have not been enumerated experimentally for C?H???N hydrogen bonds. This is, in part, due to the lack of systems that exhibit persistent C?H???N hydrogen bonds in solution. Herein, a class of molecule based on a biologically active norharman motif that exhibits unsupported intermolecular C?H???N hydrogen bonds in solution has been described. A pairwise interaction leads to dimerisation to give bond strengths of about 7 kJ mol?1 per hydrogen bond, which is similar to chemically and biologically relevant C?H???O hydrogen bonding. The experimental data is supported by computational work, which provides additional insight into the hydrogen bonding by consideration of electrostatic and orbital interactions and allowed a comparison between calculated and extrapolated NMR chemical shifts.  相似文献   

19.
The self‐assembly of triazole amphiphiles was examined in solution, the solid state, and in bilayer membranes. Single‐crystal X‐ray diffraction experiments show that stacked protonated triazole quartets (T4) are stabilized by multiple strong interactions with two anions. Hydrogen bonding/ion pairing of the anions are combined with anion–π recognition to produce columnar architectures. In bilayer membranes, low transport activity is observed when the T4 channels are operated as H+/X? translocators, but higher transport activity is observed for X? in the presence of the K+‐carrier valinomycin. These self‐assembled superstructures, presenting intriguing structural behaviors such as directionality, and strong anion encapsulation by hydrogen bonding supported by vicinal anion–π interactions can serve as artificial supramolecular channels for transporting anions across lipid bilayer membranes.  相似文献   

20.
A series of functional iodoacetylenes was prepared and converted into the corresponding diacetylene‐substituted amino acids and peptides via Pd/Cu‐promoted sp–sp carbon cross‐coupling reactions. The unsymmetrically substituted diacetylenes can be incorporated into oligopeptides without a change in the oligopeptide strand's directionality. Thus, a series of oligopeptide‐based, amphiphilic diacetylene model compounds was synthesized, and their self‐organization as well as their UV‐induced topochemical polymerizability was investigated in comparison to related polymer‐substituted macromonomers. Solution‐phase IR spectroscopy, gelation experiments, and UV spectroscopy helped to confirm that a minimum of five N‐H???O?C hydrogen‐bonding sites was required in order to obtain reliable aggregation into stable β‐sheet‐type secondary structures in organic solvents. Furthermore, the non‐equidistant spacing of these hydrogen‐bonding sites was proven to invariably lead to β‐sheets with a parallel β‐strand orientation, and the characteristic IR‐spectroscopic signatures of the latter in organic solution was identified. Scanning force micrographs of the organogels revealed that compounds with six hydrogen‐bonding sites gave rise to high aspect ratio nanoscopic fibrils with helical superstructures but, in contrast to the related macromonomers, did not lead to uniform supramolecular polymers. The UV‐induced topochemical polymerization within the β‐sheet aggregates was successful, proving parallel β‐strand orientation and highlighting the effect of the number and pattern of N‐H???O?C hydrogen‐bonding sites as well as the hydrophobic residue in the molecular structure on the formation of higher structures and reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号