首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
We report the experimental demonstration of coherent enantiomer‐selective enrichment of chiral molecules by employing a novel microwave five‐pulse scheme. Our results show that enantiomers can be selectively transferred to a rotational level of choice by applying sequences of resonant microwave pulses in a phase‐ and polarization‐controlled manner. This is achieved by simultaneously exciting all three kinds of electric dipole‐allowed rotational transitions and monitoring the effect on a fourth rotational transition of choice. Using molecular beams, we apply our method to two chiral terpenes and obtain a 6 % enantiomeric enrichment, which is one order of magnitude larger than that recently reported in a buffer‐gas cell experiment. This approach establishes a robust scheme for controlled manipulation of enantiomers using tailored microwave fields and opens up new avenues for chiral purification and enrichment that can be used in a broad scope of analytical or spectroscopic applications.  相似文献   

2.
The enantiomeric state of a supramolecular copper catalyst can be switched in situ in ca. five seconds. The dynamic property of the catalyst is provided by the non‐covalent nature of the helical assemblies supporting the copper centers. These assemblies are formed by mixing an achiral benzene‐1,3,5‐tricarboxamide (BTA) phosphine ligand (for copper coordination) and both enantiomers of a chiral phosphine‐free BTA co‐monomer (for chirality amplification). The enantioselectivity of the hydrosilylation reaction is fixed by the BTA enantiomer in excess, which can be altered by simple BTA addition. As a result of the complete and fast stereochemical switch, any combination of the enantiomers was obtained during the conversion of a mixture of two substrates.  相似文献   

3.
Novel, chiral‐selective linear nanotubular heterojunctions were achieved by living supramolecular polymerization of perylenediimide (PDI) derivatives. We demonstrate that the chiral seed can effectively bias achiral PDI molecules to polymerize on its ends in the identical helical sense. More interestingly, the chiral seed can bias the opposite enantiomers to grow expitaxially from its ends even in excess amounts relative to the seed. Furthermore, we demonstrate that the biasing effect of the chiral seed on the opposite enantiomer is not dependent on the length of the chiral seed but is related to the intrinsic length of the elongated nanotube from the opposite enantiomer. The fabrication of chiral‐selective nanotubes was achieved by application of the unique biasing effect of the chiral seed in living supramolecular self‐assembly.  相似文献   

4.
The CD spectroscopy of a chiral compound in solution yields an average CD value derived from all of the conformations of a chiral molecule. By contrast, CD spectroscopy of cold chiral molecules in the gas phase distinguishes specific conformers of a chiral molecule, but the weak CD effect has limited the practical application of this technique. Reported herein is the first resonant two‐photon ionization CD spectra of ephedrines in a supersonic jet using circularly polarized laser pulses, which were generated by synchronizing the oscillation of the photoelastic modulator with the laser firing. The spectra exhibited well‐resolved CD bands which were specific for the conformations and vibrational modes of each enantiomer. The CD signs and magnitudes of the jet‐cooled chiral molecules were very sensitive to their conformations and thus offered crucial information for determining the three‐dimensional structures of chiral species, as conducted in combination with quantum chemical calculations.  相似文献   

5.
6.
《化学:亚洲杂志》2018,13(19):2812-2817
Efficient resolution of racemic mixture has long been an attractive but challenging subject since Pasteur separated tartrate enantiomers in 19th century. Graphene oxide (GO) could be flexibly functionalized by using a variety of chiral host molecules and therefore, was expected to show excellent enantioselective resolution performance. However, this combination with efficient enantioselective resolution capability has been scarcely demonstrated. Here, nanoporous graphene oxides were produced and then covalently functionalized by using a chiral host material‐β‐cyclodextrin (β‐CD). This chiral GO displayed enantioselective affinity toward the l ‐enantiomers of amino acids. In particular, >99 % of l ‐asparagine (Asn) was captured in a racemic solution of Asn while the adsorption of d ‐enantiomer was not observed. This remarkable resolution performance was subsequently modelled by using an attach‐pull‐release dynamic method. We expect this preliminary concept could be expanded to other chiral host molecules and be employed to current membrane separation technologies and finally show practical use for many other racemates.  相似文献   

7.
同时烙印分子烙印手性固定相   总被引:6,自引:0,他引:6  
对采用两种对本同时烙印的方法,制备的氨基酸衍生物分子烙印手性固定相进行了考察。研究表明,如果两种烙印分子单独烙印的分子烙印手性对固定相对两种烙印分子具有较强的手性交叉拆分能力,那么这两种烙印分子同时烙印制得的分子烙印手性固定相就可对两种烙印分子均具有很好的手性分离能力,从而使专一性强的分子烙印手性固定相能同时分离多种对映体。  相似文献   

8.
A surface‐enhanced Raman scattering‐chiral anisotropy (SERS‐ChA) effect is reported that combines chiral discrimination and surface Raman scattering enhancement on chiral nanostructured Au films (CNAFs) equipped in the normal Raman scattering Spectrometer. The CNAFs provided remarkably higher enhancement factors of Raman scattering (EFs) for particular enantiomers, and the SERS intensity was proportional to the enantiomeric excesses (ee) values. Except for molecules with mesomeric species, all of the tested enantiomers exhibited high SERS‐ChA asymmetry factors (g), ranging between 1.34 and 1.99 regardless of polarities, sizes, chromophores, concentrations and ee. The effect might be attributed to selective resonance coupling between the induced electric and magnetic dipoles associated with enantiomers and chiral plasmonic modes of CNAFs.  相似文献   

9.
Programs of drug discovery generally exploit one enantiomer of a chiral compound for lead development following the principle that enantiomer recognition is central to biological specificity. However, chiral promiscuity has been identified for a number of enzyme families, which have shown that mirror‐image packing can enable opposite enantiomers to be accommodated in an enzyme's active site. Reported here is a series of crystallographic studies of complexes between an enzyme and a potent experimental herbicide whose chiral center forms an essential part of the inhibitor pharmacophore. Initial studies with a racemate at 1.85 Å resolution failed to identify the chirality of the bound inhibitor, however, by extending the resolution to 1.1 Å and by analyzing high‐resolution complexes with the enantiopure compounds, we determined that both enantiomers make equivalent pseudosymmetric interactions in the active site, thus mimicking an achiral reaction intermediate.  相似文献   

10.
In this paper, using the self‐polymerization of norepinephrine (NE) and its favorable film‐forming property, a simple and green preparation approach was developed to modify a PDMS channel for enantioseparation of chiral compounds. After the PDMS microchip was filled with NE solution, poly(norepinephrine) (PNE) film was gradually formed and deposited on the inner wall of microchannel as permanent coating via the oxidation of NE by the oxygen dissolved in the solution. Due to possessing plentiful catechol and amine functional groups, the PNE‐coated PDMS microchip exhibited much better wettability, more stable and suppressed EOF, and less nonspecific adsorption. The water contact angle and EOF of PNE‐coated PDMS substrate were measured to be 13° and 1.68 × 10?4 cm2 V?1 s?1, compared to those of 108° and 2.24 × 10?4 cm2 V?1 s?1 from the untreated one, respectively. Different kinds of chiral compounds, such as amino acid enantiomer, drug enantiomer, and peptide enantiomer were efficiently separated utilizing a separation length of 37 mm coupled with in‐column amperometric detection on the PNE‐coated PDMS microchips. This facile mussel‐inspired PNE‐based microchip system exhibited strong recognition ability, high‐performance, admirable reproducibility, and stability, which may have potential use in the complex biological analysis.  相似文献   

11.
The surface imprinting technique has been developed to overcome the mass‐transfer difficulty, but the utilization ratio of template molecules in the imprinting procedure still remains a challengeable task to be improved. In this work, specifically designed surface‐imprinted microspheres were prepared by a template‐oriented method for enantioseparation of amlodipine besylate. Submicron mesoporous silica microspheres were surface‐modified with double bonds, followed by polymerizing methacrylic acid to generate carboxyl modified mesoporous silica microspheres (PMAA@SiO2). Afterwards, PMAA@SiO2 was densely adsorbed with (S )‐amlodipine molecules to immobilize template molecules through multiple hydrogen bonding interactions. Then surface molecular imprinting was carried out by cross‐linking the carboxyl group of PMAA@SiO2 with ethylene glycol diglycidyl ether. The surface‐imprinted microspheres showed fast binding kinetics of only 20 min for equilibrium adsorption, and the saturation adsorption capacity reached 137 mg/g. The imprinted materials displayed appreciable chiral separation ability when used as column chromatography for enantioseparation of amlodipine from amlodipine besylate, and the enantiomeric excess of (S )‐amlodipine reached 13.8% with only 2.3 cm column length by no extra chiral additives. Besides, the imprinted materials exhibited excellent reusability, and this allows the potential application for amplification production of amlodipine enantiomer.  相似文献   

12.
The ability of capillary zone electrophoresis (CZE) coupled on‐line with capillary isotachophoresis (ITP) sample pretreatment in the column‐coupling capillary electrophoresis equipment to separate trace enantiomers present in samples of complex ionic matrices and enantiomers present in their mixtures at significantly differing concentrations has been studied. Enantiomers of 2,4‐dinitrophenyl labeled norleucine (DNP‐Nleu) and tryptophan enantiomers were employed as model analytes in this work while urine and mixtures of tryptophan enantiomers of differing concentrations served as model samples. Experiments performed with urine samples spiked with the DNP‐Nleu racemate at sub‐μmol/L concentrations demonstrated excellent sample pretreatment capabilities of ITP (concentration of the analytes, in‐column and post‐column sample clean up) when coupled on‐line with chiral CZE separations. In the CZE separations of enantiomers present in the samples at trace concentrations the sample pretreatment could be performed in both achiral and chiral ITP electrolyte systems. The use of a chiral electrolyte system was found to be essential in the ITP pretreatment of the samples containing the enantiomers at very differing concentrations. For example, a 2×10–7 mol/L concentration of L‐tryptophan could be detected in the CZE separation stage of the ITP‐CZE combination in samples containing about a 104 excess of D‐tryptophan only when the ITP pretreatment was carried out in the electrolyte system providing the resolution of enantiomers (α‐cyclodextrin served for this purpose in the present work). A post‐column ITP sample clean up was found effective in enhancing the destacking rate of the trace enantiomer in the CZE stage when the migration configuration of the enantiomers was less favorable (the trace constituent migrating behind the major enantiomer).  相似文献   

13.
Pure enantiomers of carboxylic acids are a class of important biomolecules, chiral drugs, chiral reagents, etc. Analysis of the enantiomers usually needs expensive instrument or complex chiral receptors. However, to develop simple and reliable methods for the enantiomer analysis of acids is difficult. In this paper, chiral recognition of 2,3-dibenzoyltartaric acid and mandelic acid was first carried out by aggregation-induced emission molecules bearing optically pure aminol group, which was easily synthesized. The chiral recognition is not only seen by naked eyes but also measured by fluorophotometer. The difference of fluorescence intensity between the two enantiomers of the acids aroused by the aggregation-induced emission molecules was up to 598. The chiral recognition could be applied to quantitative analysis of enantiomer content of chiral acids. More chiral AIE amines need to be developed for enantiomer analysis of more carboxylic acids.  相似文献   

14.
Chiral structures created through the adsorption of molecules onto achiral surfaces play pivotal roles in many fields of science and engineering. Here, we present a systematic study of a novel chiral phenomenon on a surface in terms of organizational chirality, that is, meso‐isomerism, through coverage‐driven hierarchical polymorphic transitions of supramolecular assemblies of highly symmetric π‐conjugated molecules. Four coverage‐dependent phases of dehydrobenzo[12]annulene were uniformly fabricated on Ag(111), exhibiting unique chiral characteristics from the single‐molecule level to two‐dimensional supramolecular assemblies. All coverage‐driven phase transitions stem from adsorption‐induced pseudo‐diastereomerism, and our observation of a lemniscate‐type (∞) supramolecular configuration clearly reveals a drastic chiral phase transition from an enantiomeric chiral domain to a meso‐isomeric achiral domain. These findings provide new insights into controlling two‐dimensional chiral architectures on surfaces.  相似文献   

15.
The separation of the enantiomers of 17 chiral sulfoxides was studied on polysaccharide‐based chiral columns in polar organic mobile phases. Enantiomer elution order (EEO) was the primary objective in this study. Two of the six chiral columns, especially those based on amylose tris(3,5‐dimethylphenylcarbamate) and cellulose tris(4‐chloro‐3‐methylphenylcarbamate) (Lux Cellulose‐4) proved to be most successful in the separation of the enantiomers of the studied sulfoxides. Interesting examples of EEO reversal were observed depending on the chiral selector or the composition of the mobile phase. For instance, the R‐(+) enantiomer of lansoprazole eluted before the S‐(?) enantiomer on Lux Cellulose‐1 in both methanol or ethanol as the mobile phase, while the elution order was opposite in the same eluents on amylose tris(3,5‐dimethylphenylcarbamate) with the S‐(?) enantiomer eluting before the R‐(+) enantiomer. The R‐(+) enantiomer of omeprazole eluted first on Lux Amylose‐2 in methanol but it was second when acetonitrile was used as the mobile phase with the same chiral selector. Several other examples of reversal in EEO were observed in this study. An interesting example of the separation of four stereoisomers of phenaminophos sulfoxide containing chiral sulfur and phosphor atoms is also reported here.  相似文献   

16.
We describe alkoxo‐aluminum catalysts of chiral bipyrrolidine‐based salan ligands that follow the dual‐stereocontrol mechanism wherein a given combination of stereogeneities at the metal site and the proximal center of the last inserted lactidyl (“match”) is active towards lactide having a proximal stereogenic center of the opposite configuration, while the diastereomeric combination of stereogeneities (“mismatch”) is inactive towards any lactide. Polymerization of rac‐LA by the enantiomerically pure catalysts was sluggish and gave stereoirregular poly(lactic acid) (PLA) because selective insertion to a match diastereomer gives a mismatch diastereomer. The racemic catalysts showed higher activity and led to highly heterotactic PLA following polymeryl exchange between two mismatched catalyst enantiomers. A succession of match diastereomers in selective meso‐LA insertions led to syndiotactic PLAs reaching a syndiotacticity degree of α=0.96. This polymer featured a Tm of 153 °C matching the highest reported value, and the highest crystallinity (ΔHm=56 J g?1) ever reported for syndiotactic PLA.  相似文献   

17.
18.
Crafting of chiral plasmonic nanostructures is extremely important and challenging. DNA‐directed organization of nanoparticle on a chiral template is the most appealing strategy for this purpose. Herein, we report a supramolecular approach for the design of DNA‐decorated, helically twisted nanoribbons through the amphiphilicity‐driven self‐assembly of a new class of amphiphiles derived from DNA and hexaphenylbenzene (HPB). The ribbons are self‐assembled in a lamellar fashion through the hydrophobic interactions of HPB. The transfer of molecular chirality of ssDNA into the HPB core results in the bias of one of the chiral propeller conformations for HPB and induces a helical twist into the lamellar packing, and leads to the formation of DNA‐wrapped nanoribbons with M‐helicity. The potential of the ribbon to act as a reversible template for the 1D chiral organization of plasmonic nanomaterials through DNA hybridization is demonstrated.  相似文献   

19.
The mechanism of chiral separation on amylose tris(3,5‐dimethylphenylcarbamate) is studied with docking simulations of enantiomers by molecular dynamics. All‐atom models of amylose tris(3,5‐dimethylphenylcarbamate) on the modified silica gel surface were constructed for the docking simulations of metalaxyl and benalaxyl. The elution orders and energetic differences were also predicted based on the intermolecular interactions, which were in agreement with the experimental results. The radial distribution function was employed to analyze the structural features of the enantiomer‐chiral stationary phase complex and used to elucidate the mechanism of chiral separation. The separation of metalaxyl and benalaxyl is mainly controlled by the hydrogen bond. And the binding sites had slight differences for the pair of enantiomers, but obvious differences between different chemicals.  相似文献   

20.
The determination of the absolute configuration of chiral molecules is at the heart of asymmetric synthesis. Here we probe the spectroscopic limits for chiral discrimination with NMR spectroscopy in chiral aligned media and with vibrational circular dichroism spectroscopy of the sixfold‐deuterated chiral neopentane. The study of this compound presents formidable challenges since its stereogenicity is only due to small mass differences. For this purpose, we selectively prepared both enantiomers of 2H6‐ 1 through a concise synthesis utilizing multifunctional intermediates. While NMR spectroscopy in chiral aligned media could be used to characterize the precursors to 2H6‐ 1 , the final assignment could only be accomplished with VCD spectroscopy, despite the fleetingly small dichroic properties of 1 . Both enantiomers were assigned by matching the VCD spectra with those computed with density functional theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号