首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By using carbon nanotubes (CNTs) as a shape template and glucose as a carbon precursor and structure‐directing agent, CNT@Fe3O4@C porous core/sheath coaxial nanocables have been synthesized by a simple one‐pot hydrothermal process. Neither a surfactant/ligand nor a CNT pretreatment is needed in the synthetic process. A possible growth mechanism governing the formation of this nanostructure is discussed. When used as an anode material of lithium‐ion batteries, the CNT@Fe3O4@C nanocables show significantly enhanced cycling performance, high rate capability, and high Coulombic efficiency compared with pure Fe2O3 particles and Fe3O4/CNT composites. The CNT@Fe3O4@C nanocables deliver a reversible capacity of 1290 mA h g?1 after 80 cycles at a current density of 200 mA g?1, and maintain a reversible capacity of 690 mA h g?1 after 200 cycles at a current density of 2000 mA g?1. The improved lithium storage behavior can be attributed to the synergistic effect of the high electronic conductivity support and the inner CNT/outer carbon buffering matrix.  相似文献   

2.
Owing to the high specific capacity and energy density, metal oxides have become very promising electrodes for lithium‐ion batteries (LIBs). However, poor electrical conductivity accompanied with inferior cycling stability resulting from large volume changes are the main obstacles to achieve a high reversible capacity and stable cyclability. Herein, a facile and general approach to fabricate SnO2, Fe2O3 and Fe2O3/SnO2 fibers is proposed. The appealing structural features are favorable for offering a shortened lithium‐ion diffusion length, easy access for the electrolyte and reduced volume variation when used as anodes in LIBs. As a consequence, both single and hybrid oxides show satisfactory reversible capacities (1206 mAh g?1 for Fe2O3 and 1481 mAh g?1 for Fe2O3/SnO2 after 200 cycles at 200 mA g?1) and long lifespans.  相似文献   

3.
Flexible lithium‐ion batteries (LIBs) have recently attracted increasing attention with the fast development of bendable electronic systems. Herein, a facile and template‐free solvothermal method is presented for the fabrication of hybrid yolk–shell CoS2 and nitrogen‐doped graphene (NG) sheets. The yolk–shell architecture of CoS2 encapsulated with NG coating is designed for the dual protection of CoS2 to address the structural and interfacial stability concerns facing the CoS2 anode. The as‐prepared composite can be assembled into a film, which can be used as a binder‐free and flexible electrode for LIBs that does not require any carbon black conducting additives or current collectors. When evaluating lithium‐storage properties, such a flexible electrode exhibits a high specific capacity of 992 mAh g?1 in the first reversible discharge capacity at a current rate of 100 mA g?1 and high reversible capacity of 882 mAh g?1 after 150 cycles with excellent capacity retention of 89.91 %. Furthermore, a reversible capacity as high as 655 mAh g?1 is still achieved after 50 cycles even at a high rate of 5 C due to the yolk–shell structure and NG coating, which not only provide short Li‐ion and electron pathways, but also accommodate large volume variation.  相似文献   

4.
The preparation of novel one‐dimensional core–shell Fe/Fe2O3 nanowires as anodes for high‐performance lithium‐ion batteries (LIBs) is reported. The nanowires are prepared in a facile synthetic process in aqueous solution under ambient conditions with subsequent annealing treatment that could tune the capacity for lithium storage. When this hybrid is used as an anode material for LIBs, the outer Fe2O3 shell can act as an electrochemically active material to store and release lithium ions, whereas the highly conductive and inactive Fe core functions as nothing more than an efficient electrical conducting pathway and a remarkable buffer to tolerate volume changes of the electrode materials during the insertion and extraction of lithium ions. The core–shell Fe/Fe2O3 nanowire maintains an excellent reversible capacity of over 767 mA h g?1 at 500 mA g?1 after 200 cycles with a high average Coulombic efficiency of 98.6 %. Even at 2000 mA g?1, a stable capacity as high as 538 mA h g?1 could be obtained. The unique composition and nanostructure of this electrode material contribute to this enhanced electrochemical performance. Due to the ease of large‐scale fabrication and superior electrochemical performance, these hybrid nanowires are promising anode materials for the next generation of high‐performance LIBs.  相似文献   

5.
In the work, a facile and green two‐step synthetic strategy was purposefully developed to efficiently fabricate hierarchical shuttle‐shaped mesoporous ZnFe2O4 microrods (MRs) with a high tap density of ~0.85 g cm3, which were assembled by 1D nanofiber (NF) subunits, and further utilized as a long‐life anode for advanced Li‐ion batteries. The significant role of the mixed solvent of glycerin and water in the formation of such hierarchical mesoporous MRs was systematically investigated. After 488 cycles at a large current rate of 1000 mA g?1, the resulting ZnFe2O4 MRs with high loading of ~1.4 mg per electrode still preserved a reversible capacity as large as ~542 mAh g?1. Furthermore, an initial charge capacity of ~1150 mAh g?1 is delivered by the ZnFe2O4 anode at 100 mA g?1, resulting in a high Coulombic efficiency of ~76 % for the first cycle. The superior Li‐storage properties of the as‐obtained ZnFe2O4 were rationally associated with its mesoprous micro‐/nanostructures and 1D nanoscaled building blocks, which accelerated the electron transportation, facilitated Li+ transfer rate, buffered the large volume variations during repeated discharge/charge processes, and provided rich electrode–electrolyte sur‐/interfaces for efficient lithium storage, particularly at high rates.  相似文献   

6.
A composite of highly dispersed Fe3O4 nanoparticles (NPs) anchored in three‐dimensional hierarchical porous carbon networks (Fe3O4/3DHPC) as an anode material for lithium‐ion batteries (LIBs) was prepared by means of a deposition technique assisted by a supercritical carbon dioxide (scCO2)‐expanded ethanol solution. The as‐synthesized Fe3O4/3DHPC composite exhibits a bimodal porous 3D architecture with mutually connected 3.7 nm mesopores defined in the macroporous wall on which a layer of small and uniform Fe3O4 NPs was closely coated. As an anode material for LIBs, the Fe3O4/3DHPC composite with 79 wt % Fe3O4 (Fe3O4/3DHPC‐79) delivered a high reversible capacity of 1462 mA h g?1 after 100 cycles at a current density of 100 mA g?1, and maintained good high‐rate performance (728, 507, and 239 mA h g?1 at 1, 2, and 5 C, respectively). Moreover, it showed excellent long‐term cycling performance at high current densities, 1 and 2 A g?1. The enhanced lithium‐storage behavior can be attributed to the synergistic effect of the porous support and the homogeneous Fe3O4 NPs. More importantly, this straightforward, highly efficient, and green synthetic route will definitely enrich the methodologies for the fabrication of carbon‐based transition‐metal oxide composites, and provide great potential materials for additional applications in supercapacitors, sensors, and catalyses.  相似文献   

7.
α‐Fe2O3 nanoparticles are uniformly coated on the surface of α‐MoO3 nanorods through a two‐step hydrothermal synthesis method. As the anode of a lithium‐ion battery, α‐Fe2O3@α‐MoO3 core–shell nanorods exhibit extremely high lithium‐storage performance. At a rate of 0.1 C (10 h per half cycle), the reversible capacity of α‐Fe2O3@α‐MoO3 core–shell nanorods is 1481 mA h g?1 and a value of 1281 mA h g?1 is retained after 50 cycles, which is much higher than that retained by bare α‐MoO3 and α‐Fe2O3 and higher than traditional theoretical results. Such a good performance can be attributed to the synergistic effect between α‐Fe2O3 and α‐MoO3, the small size effect, one‐dimensional nanostructures, short paths for lithium diffusion, and interface spaces. Our results reveal that core–shell nanocomposites have potential applications as high‐performance lithium‐ion batteries.  相似文献   

8.
Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes (CNTs) have been synthesized by an efficient multi‐step route. Starting from polymer‐cobalt acetate (Co(Ac)2) composite nanofibers, uniform polymer‐Co(Ac)2@zeolitic imidazolate framework‐67 (ZIF‐67) core–shell nanofibers are first synthesized via partial phase transformation with 2‐methylimidazole in ethanol. After the selective dissolution of polymer‐Co(Ac)2 cores, the resulting ZIF‐67 tubular structures can be converted into hierarchical CNTs/Co‐carbon hybrids by annealing in Ar/H2 atmosphere. Finally, the hierarchical CNT/Co3O4 microtubes are obtained by a subsequent thermal treatment in air. Impressively, the as‐prepared nanocomposite delivers a high reversible capacity of 1281 mAh g?1 at 0.1 A g?1 with exceptional rate capability and long cycle life over 200 cycles as an anode material for lithium‐ion batteries.  相似文献   

9.
Binary metal oxides have been deemed as a promising class of electrode materials for high‐performance lithium ion batteries owing to their higher conductivity and electrochemical activity than corresponding monometal oxides. Here, NiFe2O4 nanoplates consisting of nanosized building blocks have been successfully fabricated by a facile, large‐scale NaCl and KCl molten‐salt route, and the changes in the morphology of NiFe2O4 as a function of the molten‐salt amount have been systemically investigated. The results indicate that the molten‐salt amount mainly influences the diameter and thickness of the NiFe2O4 nanoplates as well as the morphology of the nanosized building blocks. Cyclic voltammetry (CV) and galvanostatic charge–discharge measurements have been conducted to evaluate the lithium storage properties of the NiFe2O4 nanoplates prepared with a Ni(NO3)2/Fe(NO3)3/KCl/NaCl molar ratio of 1:2:20:60. A high reversible capacity of 888 mAh g?1 is delivered over 100 cycles at a current density of 100 mA g?1. Even at a current density of 5000 mA g?1, the discharge capacity could still reach 173 mAh g?1. Such excellent electrochemical performances of the NiFe2O4 nanoplates are contributed to the short Li+ diffusion distance of the nanosized building blocks and the synergetic effect of the Ni2+ and Fe3+ ions.  相似文献   

10.
The electrode materials with hollow structure and/or graphene coating are expected to exhibit outstanding electrochemical performances in energy‐storage systems. 2D graphene‐wrapped hollow C/Fe3O4 microspheres are rationally designed and fabricated by a novel facile and scalable strategy. The core@double‐shell structure SPS@FeOOH@GO (SPS: sulfonated polystyrene, GO: graphene oxide) microspheres are first prepared through a simple one‐pot approach and then transformed into C/Fe3O4@G (G: graphene) after calcination at 500 °C in Ar. During calcination, the Kirkendall effect resulting from the diffusion/reaction of SPS‐derived carbon and FeOOH leads to the formation of hollow structure carbon with Fe3O4 nanoparticles embedded in it. In the rationally constructed architecture of C/Fe3O4@G, the strongly coupled C/Fe3O4 hollow microspheres are further anchored onto 2D graphene networks, achieving a strong synergetic effect between carbon, Fe3O4, and graphene. As an anode material of Li‐ion batteries (LIBs), C/Fe3O4@G manifests a high reversible capacity, excellent rate behavior, and outstanding long‐term cycling performance (1208 mAh g?1 after 200 cycles at 100 mA g?1).  相似文献   

11.
Sodium metal is a promising anode, but uneven Na deposition with a dendrite growth seriously impedes its application. Herein, a fibrous hydroxylated MXene/carbon nanotubes (h‐Ti3C2/CNTs) composite is designed as a scaffold for dendrite‐free Na metal electrodes. This composite displays fast Na+/electron transport kinetics and good thermal conductivity and mechanical properties. The h‐Ti3C2 contains abundant sodiophilic functional groups, which play a significant role in inducing homogeneous nucleation of Na. Meanwhile, CNTs provide high tensile strength and ease of film‐forming. As a result, h‐Ti3C2/CNTs exhibit a high average Coulombic efficiency of 99.2 % and no dendrite after 1000 cycles. The h‐Ti3C2/CNTs/Na based symmetric cells show a long lifespan over 4000 h at 1.0 mA cm?2 with a capacity of 1.0 mAh cm?2. Furthermore, Na‐O2 batteries with a h‐Ti3C2/CNTs/Na anode exhibit a low potential gap of 0.11 V after an initial 70 cycles.  相似文献   

12.
Graphitized carbon (GC) and graphene (GE) modified Fe2O3/Li4Ti5O12 (LTO) composites have been synthesized via a solid‐state reaction, respectively. The structure, morphology and electrochemical performance of the materials have also been characterized with X‐ray diffraction (XRD), scanning electron microscope (SEM) with an energy dispersive spectroscopy (EDS) system, X‐ray photoelectron spectrometer (XPS), Fourier transform infrared spectroscopy (FTIR) and electrochemical measurements. The discharge capacities of Fe2O3/LTO, GC/Fe2O3/LTO and GE/Fe2O3/LTO are 100.2 mAh g?1, 207.5 mAh g?1 and 238.9 mAh g?1 after 100 cycles at the current density of 176 mA g?1. The cyclic stability and rate capability are in the order of GE/Fe2O3/LTO > GC/Fe2O3/LTO > Fe2O3/LTO because of the synergistic effect between GC (GE) and Fe2O3/LTO. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The limited triple‐phase boundaries (TPBs) in solid‐state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high‐performance all‐solid‐state lithium‐oxygen (ASS Li‐O2) batteries a challenge. Herein, an adjustable‐porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in‐situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li+/e?, as well as ensures fast flow of O2, forming continuous and abundant TPBs. The high Li+ conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li‐O2 battery based on this adjustable‐porosity PCE exhibits superior performances with high specific capacity (5963 mAh g?1), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li‐O2 batteries.  相似文献   

14.
Fe-based compounds with good environmental friendliness and high reversible capacity have attracted considerable attention as anode for lithium-ion batteries.But,similar to other transition metal oxides(TMOs),it is also affected by large volume changes and inferior kinetics during redox reactions,resulting in the destruction of the crystal structure and poor electrochemical performance.Here,Fe_3O_4/C nanospheres anchored on the two-dimensional graphene oxide as precursors are phosphated and sintered to build the multiphasic nanocomposite.XRD results confirmed the multiphasic nanocomposite composed of Fe_2O_3,Fe_3O_4 and Fe_3PO_7,which will facilitate the Li~+ diffusion.And the carbonaceous matrix will buffer the volume changes and enhance electron conduction.Consequently,the multiphasic Febased anode delivers a large specific capacity of 1086 mAh/g with a high initial Coulombic efficiency of 87% at 0.1 C.It also has excellent cycling stability and rate property,maintaining a capacity retention of~87% after 300 cycles and a high reversible capacity of 632 mAh/g at 10 C.The proposed multiphasic structure offers a new insight into improving the electrochemical properties of TMO-based anodes for advanced alkali-ion batteries.  相似文献   

15.
Crystalline Si nanoparticles are prepared by reduction of SiCl4 with metallic magnesium in the molten salt of AlCl3 at 200 °C in an autoclave. AlCl3 not only acts as molten salt, but also participates in the reaction. The related experiments confirm that metallic Mg reduces AlCl3 to create nascent Al which could immediately reduce SiCl4 to Si, and the by‐product MgCl2 would combine with AlCl3 forming complex of MgAl2Cl8. As anode for rechargeable lithium ion batteries, the as‐prepared Si delivers the reversible capacity of 3083 mAh g?1 at 1.2 A g?1 after 50 cycles, and 1180 mAh g?1 at 3 A g?1 over 500 cycles.  相似文献   

16.
A facile hybrid assembly between Ti3C2Tx MXene nanosheets and (3‐aminopropyl) triethoxylsilane‐modified Si nanoparticles (NH2?Si NPs) was developed to construct multilayer stacking of Ti3C2Tx nanosheets with NH2?Si NPs assembling together (NH2?Si/Ti3C2Tx). NH2?Si/Ti3C2Tx exhibits a significantly enhanced lithium storage performance compared to pristine Si, which is attributed to the robust crosslinking architecture and considerably improved electrical conductivity as well as shorter Li+ diffusion pathways. The optimized NH2?Si/Ti3C2Tx anode with Ti3C2Tx: NH2?Si mass ratio of 4 : 1 displays an enhanced capacity (864 mAh g?1 at 0.1 C) with robust capacity retention, which is significantly higher than those of NH2?Si NPs and Ti3C2Tx anodes. Furthermore, this work demonstrates the important effect of the MXene‐based electrode architecture on the electrochemical performance and can guide future work on designing high‐performance Si/MXene hybrids for energy storage applications.  相似文献   

17.
The synthesis of nanoporous graphene by a convenient carbon nanofiber assisted self‐assembly approach is reported. Porous structures with large pore volumes, high surface areas, and well‐controlled pore sizes were achieved by employing spherical silica as hard templates with different diameters. Through a general wet‐immersion method, transition‐metal oxide (Fe3O4, Co3O4, NiO) nanocrystals can be easily loaded into nanoporous graphene papers to form three‐dimensional flexible nanoarchitectures. When directly applied as electrodes in lithium‐ion batteries and supercapacitors, the materials exhibited superior electrochemical performances, including an ultra‐high specific capacity, an extended long cycle life, and a high rate capability. In particular, nanoporous Fe3O4–graphene composites can deliver a reversible specific capacity of 1427.5 mAh g?1 at a high current density of 1000 mA g?1 as anode materials in lithium‐ion batteries. Furthermore, nanoporous Co3O4–graphene composites achieved a high supercapacitance of 424.2 F g?1. This work demonstrated that the as‐developed freestanding nanoporous graphene papers could have significant potential for energy storage and conversion applications.  相似文献   

18.
Herein, we report a facile and “green” synthetic route for the preparation of Ge@C core–shell nanocomposites by using a low‐cost Ge precursor. Field‐emission scanning electron microscopy and transmission electron microscopy analyses confirmed the core–shell nanoarchitecture of the Ge@C nanocomposites, with particle sizes ranging from 60 to 100 nm. Individual Ge nanocrystals were coated by a continuous carbon layer, which had an average thickness of 2 nm. When applied as an anode materials for lithium‐ion batteries, the Ge@C nanocomposites exhibited a high initial discharge capacity of 1670 mAh g?1 and superior rate capability. In particular, Ge@C nanocomposite electrodes maintained a reversible capacity of 734 mAh g?1 after repeated cycling at a current density of 800 mA g?1 over 100 cycles.  相似文献   

19.
Metal oxides have a large storage capacity when employed as anode materials for lithium‐ion batteries (LIBs). However, they often suffer from poor capacity retention due to their low electrical conductivity and huge volume variation during the charge–discharge process. To overcome these limitations, fabrication of metal oxides/carbon hybrids with hollow structures can be expected to further improve their electrochemical properties. Herein, ZnO‐Co3O4 nanocomposites embedded in N‐doped carbon (ZnO‐Co3O4@N‐C) nanocages with hollow dodecahedral shapes have been prepared successfully by the simple carbonizing and oxidizing of metal–organic frameworks (MOFs). Benefiting from the advantages of the structural features, i.e. the conductive N‐doped carbon coating, the porous structure of the nanocages and the synergistic effects of different components, the as‐prepared ZnO‐Co3O4@N‐C not only avoids particle aggregation and nanostructure cracking but also facilitates the transport of ions and electrons. As a result, the resultant ZnO‐Co3O4@N‐C shows a discharge capacity of 2373 mAh g?1 at the first cycle and exhibits a retention capacity of 1305 mAh g?1 even after 300 cycles at 0.1 A g?1. In addition, a reversible capacity of 948 mAh g?1 is obtained at a current density of 2 A g?1, which delivers an excellent high‐rate cycle ability.  相似文献   

20.
Considerable lithium‐driven volume changes and loss of crystallinity on cycling have impeded the sustainable use of transition metal oxides (MOs) as attractive anode materials for advanced lithium‐ion batteries that have almost six times the capacity of carbon per unit volume. Herein, Co3O4 was used as a model MO in a facile process involving two pyrolysis steps for in situ encapsulation of nanosized MO in porous two‐dimensional graphitic carbon nanosheets (2D‐GCNs) with high surface areas and abundant active sites to overcome the above‐mentioned problems. The proposed method is inexpensive, industrially scalable, and easy to operate with a high yield. TEM revealed that the encaged Co3O4 is well separated and uniformly dispersed with surrounding onionlike graphitic layers. By taking advantage of the high electronic conductivity and confinement effect of the surrounding 2D‐GCNs, a hierarchical GCNs‐coated Co3O4 (Co3O4@GCNs) anode with 43.5 wt % entrapped active nanoparticles delivered a remarkable initial specific capacity of 1816 mAh g?1 at a current density of 100 mA g?1. After 50 cycles, the retained capacity is as high as 987 mAh g?1. When the current density was increased to 1000 mA g?1, the anode showed a capacity retention of 416 mAh g?1. Enhanced reversible rate capability and prolonged cycling stability were found for Co3O4@GCN compared to pure GCNs and Co3O4. The Co3O4@GCNs hybrid holds promise as an efficient candidate material for anodes due to its low cost, environmentally friendly nature, high capacity, and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号