首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Mononuclear transition metal(II) complexes of the type M(L)2?2H2O (where M = Co, Ni, Cu, Zn) have been synthesized from uninegative Schiff base ligands (HL1–HL4) designed by condensation of 4‐fluorobenzylamine with 2‐hydroxy‐1‐naphthaldehyde/3,5‐dichlorosalicylaldehyde/3,5‐dibromosalicylaldehyde/3‐bromo‐5‐chlorosalicylaldehyde. The compounds were successfully characterized using spectroscopic and physiochemical methods together with elemental analysis. Spectroscopic elucidation indicates a monobasic bidentate nature of ligands coordinated via deprotonated phenolic oxygen and azomethine nitrogen atom which suggests an octahedral geometry around the central metal ions. The complexes and ligands were screened for their in vitro antimicrobial activity against bacterial and fungal strains, the zinc(II) complexes being more active against the tested microbial strains. Further, the metal complexes were found to be more active than the uncomplexed ligands due to chelation process and, moreover, the complexes were more active against fungal strains than bacterial strains. Cytotoxic activities of all compounds were evaluated towards human alveolar adenocarcinoma epithelial cell line (A549), human breast adenocarcinoma cell line (MCF7), human prostate cancer cell line (DU145) and one normal human lung cell line (MRC‐5) using MTT colorimetric assay with doxorubicin as a standard. The zinc complexes were most active against the cancer cell lines and also found to be less toxic against MRC‐5 normal cell line than standard doxorubicin.  相似文献   

2.
A bioactive Schiff base HL i.e. 2‐hydroxy‐benzoic acid(3,4‐dihydro‐2H ‐naphthalen‐1‐ylidene)‐hydrazide was synthesized by reacting equimolar amount of salicylic acid hydrazide and 1‐tetralone. Co(II), Ni(II) and Zn(II) complexes of ligand HL was synthesized in 1:1 and 1:2 molar ratio of metal to ligand. The structure of the synthesized ligand and metal complexes was established by elemental analysis, molar conductance, magnetic susceptibility measurements, electronic, IR and EPR spectral techniques. For determining the thermal stability the TGA has been done. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6–31 + g(d,p) basis set. Spectral data reveal that ligand behave uninegative tridentate in ML complexes and uninegative bidentate in ML2 complexes. On the basis of characterization octahedral geometry has been assigned for Co(II) and Ni(II) complexes, while tetrahedral for Zn(II) complexes. Antibacterial activity of the synthesized compounds were evaluated against Staphylococcus aureus , Bacillus subtilis, Escherichia coli , Xanthomonas campestris and Pseudomonas aeruginosa and the results revealed that metal complexes show enhanced activity in comparison to free ligand.  相似文献   

3.
Transition metal complexes of type M(L)2(H2O)x were synthesized, where L is deprotonated Schiff base 2,4‐dihalo‐6‐(substituted thiazol‐2‐ylimino)methylphenol derived from the condensation of aminothiazole or its derivatives with 2‐hydroxy‐3‐halobenzaldehyde and M = Co2+, Ni2+, Cu2+ and Zn2+ (x = 0 for Cu2+ and Zn2+; x = 2 for Co2+ and Ni2+). The synthesized Schiff bases and their metal complexes were thoroughly characterized using infrared, 1H NMR, electronic and electron paramagnetic resonance spectroscopies, elemental analysis, molar conductance and magnetic susceptibility measurements, thermogravimetric analysis and scanning electron microscopy. The results reveal that the bidentate ligands form complexes having octahedral geometry around Co2+ and Ni2+ metal ions while the geometry around Cu2+ and Zn2+ metal ions is four‐coordinated. The geometries of newly synthesized Schiff bases and their metal complexes were fully optimized in Gaussian 09 using 6–31 + g(d,p) basis set. Fluorescence quenching data reveal that Zn(II) and Cu(II) complexes bind more strongly to bovine serum albumin in comparison to Co(II) and Ni(II) complexes. The ligands and their complexes were evaluated for in vitro antibacterial activity against Escherichia coli ATCC 25922 (Gram negative) and Staphylococcus aureus ATCC 29213 (Gram positive) and cytotoxicity against lever hepatocellular cell line HepG2.  相似文献   

4.
This article describes the synthesis, structural aspects and biological studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of a new hydrazone derived from the condensation of isatin and 2‐aminobenzoylhydrazide. The ligand is well characterized using 1H NMR, 13C NMR, 2D HETCOR, mass and IR spectral studies. The chelating tendency of the ligand towards transition metal ions is established using analytical and spectral studies, which reveal the monobasic tridentate nature of the ligand. Octahedral geometry for Co(II), Cu(II) and Zn(II) and tetrahedral geometry for Ni(II) are tentatively proposed. All the synthesized compounds were screened for in vitro anticancer activity against Ehrlich ascites carcinoma and human cancer cell lines (adenocarcinoma HT29, kidney cancer cell line K293 and breast cancer cell line MDA231) using tryphan blue exclusion method and MTT assay. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A new ligand, 2‐aminonicotinaldehyde N‐methyl thiosemicarbazone (ANMTSC) and its metal complexes [Co(II) ( 1 ); Ni(II) ( 2 ); Cu(II) ( 3 ); Zn(II) ( 4 ); Cd(II) ( 5 ) or Hg(II) ( 6 )] were synthesized. The compounds were characterized by analytical methods and various spectroscopic (infrared, magnetic, thermal, 1H, 13C NMR, electronic and ESR) tools. The structure of ANMTSC ligand was confirmed by single crystal X‐ray diffraction study. The spectral data of metal complexes indicate that the ligand acts as mononegative, bidentate coordination through imine nitrogen (N) and thiocarbonyl sulphur (S?) atoms. The proposed geometries for complexes were octahedral ( 1 – 2 ), distorted octahedral ( 3 ) and tetrahedral ( 4 – 6 ). Computational details of theoretical calculations (DFT) of complexes have been discussed. The compounds were subjected to antimicrobial, antioxidant, antidiabetic, anticancer, ROS, studies and EGFR targeting molecular docking analysis. Complex 5 has shown excellent antibacterial activity and the complexes 2 and 5 have shown good antifungal activity. The complexes 1 and 4 displayed good antioxidant property with IC50 values of 11.17 ± 1.92 μM and 10.79 ± 1.85 μM, respectively compared to standard. In addition, in vitro anticancer activity of the compounds was investigated against HeLa, MCF‐7, A549, IMR‐32 and HEK 293 cell lines. Among all the compounds, complex 4 was more effective against HeLa (IC50 = 10.28 ± 0.69 μM), MCF‐7 (IC50 = 9.80 ± 0.83 μM), A549 (IC50 = 11.08 ± 0.57 μM) and IMR‐32 (10.41 ± 0.60 μM) exhibited superior anticancer activity [IC50 = 9.80 ± 0.83 ( 4 ) and 9.91 ± 0.37 μM ( 1 )] against MCF‐7 compared with other complexes.  相似文献   

6.
The tetradentate Schiff base ligand (SB), N,N′‐bis‐(2‐mercaptophenylimine)‐2,5‐thiophenedicarboxaldehyde was prepared via condensation of 2,5‐thiophene‐dicarboxaldehyde with 2‐aminothiophenol in a 1:2 molar ratio by conventional method. Additionally, its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized and fully characterized by elemental analysis, FT‐IR, 1H NMR, 13C NMR, UV–Vis, ESR, ESI‐mass, conductivity and magnetic susceptibility measurements. Spectral studies suggested that, the Schiff base coordinate metal ions through the azomethine N‐ and deprotonated thiol S‐ atoms. Based on UV–Vis absorption and magnetic susceptibility data, tetrahedral geometry was assigned for both Co(II) and Zn(II) complexes, whereas on the other hand, square planar geometry for both Ni(II) and Cu(II) complexes. The Schiff base and its metal complexes were screened for their in vitro antimicrobial activity by minimum inhibitory concentration (MIC) method. Free radical scavenging activity of the novel compounds was determined by elimination of 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) radicals. In addition, the interactions of the free ligand and its complexes with calf thymus DNA (CT‐DNA) were explored using absorption, emission and viscosity measurements techniques.  相似文献   

7.
A series of copper(II) complexes containing 6‐methyl‐2‐oxo‐1,2‐dihydroquinoline‐3‐carboxaldehyde‐derived Schiff bases have been synthesized and characterised using various analytical and spectroscopic techniques. X‐ray crystallographic analysis confirmed the true coordinating nature of ligands with copper ion. The ligands exhibited ONS tridentate neutral and monobasic coordination. The spectroscopic results evidenced the interaction of the ligands and their copper(II) complexes with nucleic acid/serum albumin. Further, the complexes showed significant activity against human skin cancer cell line (A431) and less toxicity against human keratinocyte cell line (HaCaT). Acridine orange/propidium iodide dual staining studies indicated that the major cause of A431 cell death was through necrosis. By comparing the biological activity of all the ligands, Cu(II) complexes and standard (cisplatin), complex [Cu(H‐6MOQtsc‐Ph)(H2O)]?NO3 ( 4 ) exhibited better activity than others, the activity being arranged as follows: 4  >  1  > cisplatin >  3  >  2 .  相似文献   

8.
《中国化学会会志》2017,64(3):261-281
A new Schiff base was prepared from the reaction of 4,4′‐methylenedianiline with 2‐benzoylpyridine in 1:2 molar ratio, as well as its different metal chelates. The structures of the ligand and its metal complexes were studied by elemental analyses, spectroscopic methods (infrared [IR ], ultraviolet–visible [UV –vis], 1H nuclear magnetic resonance [NMR ], electron spin resonance [ESR ]), magnetic moment measurements, and thermal studies. The ligand acts as tetradentate moiety in all complexes. Octahedral geometry was suggested for Mn(II ), Cu(II ), Cr(III ), and Zn(II ) chloride complexes and pentacoordinated structure and square planar geometry for Co(II ), Ni(II ), Cu(NO3 )2, CuBr2 , and Pd(II ) complexes. ESR spectra of copper(II ) complexes ( 4 )–( 6 ) at room temperature display rhombic symmetry for complex ( 4 ) and axial type symmetry for complexes ( 5 ) and ( 6 ), indicating ground state for Cu(II ) complexes. The derivative thermogravimetric (DTG ) curves of the ligand and its metal complexes were analyzed by using the rate equation to calculate the thermodynamic and kinetic parameters, which indicated strong binding of the ligand with the metal ion in some complexes. Also, some of these compounds were screened to establish their potential as anticancer agents against the human hepatic cell line Hep‐G2 . The obtained IC50 value of the copper(II ) bromide complex (4.34 µg/mL ) is the highest among the compounds studied.  相似文献   

9.

Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized from hydrazone ligands (HL1–HL4) obtained by condensation reaction of 6-chlorothiochroman-4-one with benz hydrazide/nicotinic hydrazide/isonicotinic hydrazide/p-toluic hydrazide. The synthesized compounds (1–20) were characterized by physicochemical procedures, i.e. (FTIR, 1H NMR, 13C NMR, mass, ESR, UV–Vis), TGA/DTA, powder XRD, elemental analysis (CHN), magnetic susceptibility and molar conductance measurements. The various data suggested bidentate nature (NO) of hydrazones, which coordinate with central metal ions via nitrogen of azomethine (–C=N–) group and deprotonated carbonyl oxygen in the enolized form, resulting in octahedral complexes. Low values of molar conductance suggested their non-electrolytic nature. Thermal decomposition pattern of complexes confirms the metal oxides as end product. In vitro antimicrobial activity of hydrazones and their metal complexes were evaluated against two gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus); two gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli); and two fungal strains (Candida albicans and Aspergillus niger) by serial dilution method, and it was found that the metal complexes were highly active as compared to hydrazones. Among all the compounds, complexes 11, 13, 14 and 19 were found most efficient antimicrobial agent. The anticancer activity of (1–20) compounds was performed on human cancer cell lines A549 (lung), DU145 (prostate) and SW620 (colorectal) by MTT assay using paclitaxel as reference drug. The cytotoxicity results suggested compounds [Cu(L2)2(H2O)2] 11 as most potent against A549, DU145 and SW620 cancer cell lines with IC50 values of 3.46, 18.21 and 7.61 µM. Furthermore, compounds (9, 10, 11, 12) were also investigated on A549 cell line for their ROS generation and mitochondrial membrane potential loss and suggested that complex [Cu(L2)2(H2O)2] 11 has highest ROS production and induction of apoptosis by mitochondrial depolarization in cancer cells.

Graphic abstract

The synthesized compounds (1–20) were screened for in vitro cytotoxicity against A549 (lung), DU145 (prostate), SW620 (colorectal) human cancer cell lines. Copper complex (11) was found to be the most active antitumor agent which enhance ROS production and MMP loss on A549 cells.

  相似文献   

10.
New Schiff bases have been synthesized from benzofuran-2-carbohydrazide and benzaldehyde, [BPMC] or 3,4-dimethoxybenzaldehyde, [BDMeOPMC]; complexes of the type MLX2, where M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II), L = BPMC or BDMeOPMC and X = Cl, have been prepared. Structures have been elucidated on the basis of elemental analysis, conductance measurements, magnetic properties, spectral studies i.e., 1H NMR, electronic, ESR and IR studies show that the Schiff bases are bidentate through the azomethine nitrogen and oxygen of the carbonyl. We propose tentative structures for all of these complexes. The antifungal and antibacterial activities of the ligands and their metal complexes have been screened against fungi Aspergillus niger and Aspergillus fumigatus and against bacteria Escherichia coli and S. aurious.  相似文献   

11.
Thiosemicarbazone ligand, 2‐((4,9‐dimethoxy‐5‐oxo‐5H‐furo[3,2‐g]chromen‐6‐yl)methylene) hydrazinecarbothioamide and its Cd(II), Cu(II), Zn(II), Ni(II), Co(II), VO(II), and Mn(II) complexes have been prepared and characterized by various spectroscopic and analytical techniques. Complexes molar conductance measurements displayed that all complexes (2–8) are non‐electrolyte. With general composition [M(H3L)(CH3COO)2H2O].nH2O, where M = Cd(II), Cu(II), Zn(II), Ni(II), Co(II) and Mn(II) while complex (8) has [VO(H3L)(SO4)H2O].2H2O formula. Based on analytical and spectral measurements, the octahedral or distorted octahedral geometries suggested for complexes. Ligand and complexes anti‐proliferative activities were assessed against three various human tumor cell lines including breast cancer (MCF‐7), liver cancer (HepG2) and lung cancer (A549) using SRB fluorometric assay and cis‐platin as positive control. The anti‐proliferative activity result indicated that the ligand and its complexes have considerable anti‐proliferative activity analogous to that of ordinarily utilized anti‐cancer drug (cis‐platin). They do their anti‐cancer activities by modifying free radical's generation via raising the superoxide dismutase activity and depletion of intracellular reduced glutathione level, catalase, glutathione peroxidase activities, escorted by highly generation of hydrogen peroxide, nitric oxide and other free radicals leading to tumor cells death, as monitoring by decreasing the protein and nucleic acids synthesis.  相似文献   

12.
Six complexes of Zn(II), Cd(II) and Hg(II) with sulphur containing Schiff base ligand, 1,4‐bis((1H‐pyrrol‐2‐yl)methylene)thiosemicarbazide in 1:1 and 1:2 ratio has been synthesized. Complexes were characterized by molar conductance measurement, elemental analyses, FT‐IR, 1H‐NMR, and FAB/ESI‐Mass. The complexes were used as a single source precursor for the synthesis of ZnS/CdS/HgS nanoparticles by their thermal decomposition in the presence of different surfactants. The precursor: surfactant ratio and temperature plays important role in determining the size of the nanoparticles. The size and morphology of nanoparticles has been ascertained by UV‐Vis spectroscopy, XRD measurements and Transmission Electron Microscopy (TEM). Schiff base, complexes and nanoparticles were tested for antibacterial activity and MIC values against E. coli. The complexes were found more potent than the corresponding Schiff bases and nanoparticles.  相似文献   

13.
The binuclear Ru(II) complexes with Schiff bases derived from 5-chlorosalicyladehyde and 2-aminopyridine and its 5-substituted salicylideneimine homologues were tested in vitro against cervical carcinoma (HeLa), metastatic colorectal adenocarcinoma (SW620), lung adenocarcinoma (A549), breast adenocarcinoma (MCF-7), and human lung fibroblast (WI-38) cell lines. All compounds showed strong antiproliferative activity with extremely low IC50 values. The compounds expressed strong activity against gram-positive bacteria, Staphylococcus aureus and Enterococcus faecalis.  相似文献   

14.
Eight novel Pt(II), Pd(II), Cu(II) and Zn(II) complexes with 4’‐substituted terpyridine were synthesized and characterized by elemental analysis, UV, IR, NMR, electron paramagnetic resonance, high‐resolution mass spectrometry and molar conductivity measurements. The cytotoxicity of these complexes against HL‐60, BGC‐823, KB and Bel‐7402 cell lines was evaluated by MTT assay. All the complexes displayed cytotoxicity with low IC50 values (<20 μm ) and showed selectivity. Complexes 3 , 5 , 7 and 8 exerted 9‐, 5‐, 12‐ and 7‐fold higher cytotoxicity than cisplatin against Bel‐7402 cell line. The cytotoxicity of complexes 3 , 5 , 6 , 7 and 8 was higher than that of cisplatin against BGC‐823 cell line. Complexes 3 , 7 and 8 showed similar cytotoxicity to cisplatin against KB cell line. Complex 7 exhibited higher cytotoxicity than cisplatin against HL‐60 cell line. Among these complexes, complex 7 demonstrated the highest in vitro cytotoxicity, with IC50 values of 1.62, 3.59, 2.28 and 0.63 μm against HL‐60, BGC‐823, Bel‐7402 and KB cells lines, respectively. The results suggest that the cytotoxicity of these complexes is related to the nature of the terminal group of the ligand, the metal center and the leaving groups. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
In quest of new metallo‐pharmaceuticals with enhanced anticancer activity, four new phosphine‐ and carbodithioate‐based Pd(II) complexes of the type [(R)CS2Pd(PR3)Cl] (where R = 4‐(2‐hydroxyethyl)piperazine ( 1 , 2 ), dibenzyl ( 3 , 4 ); PR3 = diphenyl(p ‐tolyl)phosphine ( 1 , 3 ), tris(4‐tolyl)phosphine ( 2 , 4 )) were synthesized and characterized using elemental analysis, Fourier transform infrared and NMR (1H, 13C and 31P) spectroscopies and single‐crystal X‐ray diffraction. The X‐ray diffraction data confirmed the pseudo square‐planar geometry ensuring bidentate coordination mode of carbodithioate ligands. Anticancer activity of the synthesized complexes and their ligands was assessed against human lung (A549), breast (MCF‐7) and prostate (PC3) carcinoma cells using MTT assay. All the tested compounds showed activity in micromolar range. In many cases, the cytotoxicity of the synthesized complexes was higher than or comparable to that of the standard drugs cisplatin and doxorubicin. Complex 3 emerged as the most promising compound with the lowest IC50 values of 4.83, 3.72 and 5.11 μM for A549, MCF‐7 and PC3 carcinoma cell lines, respectively. DNA binding studies were also carried out using UV–visible spectroscopy. We extended our investigations to explore the mechanism of anticancer activity using in silico tools. Based on the mechanism of action of standard drugs used, extensive docking studies were carried out on the three different biomolecular targets.  相似文献   

16.
Four different mononuclear palladium(II) complexes of 3‐acetyl‐8‐methoxycoumarin Schiff bases were synthesized and characterized by spectrochemical techniques. Further analysis through X‐ray crystallography confirmed the structures of the complexes. Their interactive ability with Calf Thymus DNA and protein (Bovine Serum Albumin and Human Serum Albumin) were investigated by means of absorption and emission methods. The intercalative mode of binding with DNA was supported by EB displacement studies and viscosity measurements. Configurational changes that occurred in the proteins have been analysed with the help of 3D fluorescence studies. The complexes were shown to have good antimicrobial activity against the tested bacterial and fungal pathogens. In addition, antiproliferative activity of the complexes was evaluated on A549 and MCF‐7 cell lines and the complexes were comparatively more active than the standard drug cisplatin. Among the compounds, complex 3 was the most effective against MCF‐7 (IC50 value of 5.20 ± 0.15 μM) and A549 (5.09 ± 0.13 μM) compared with the other complexes 1 (6.48 ± 0.17 μM; 5.98 ± 0.09 μM), 2 (5.53 ± 0.12 μM; 5.85 ± 0.11 μM), 4 (6.73 ± 0.19 μM; 6.63 ± 0.16 μM) and cisplatin (16.79 ± 0.08 μM; 15.10 ± 0.05 μM) respectively. LDH and NO release assays confirmed the cytotoxic potential of the synthesized complexes.  相似文献   

17.
Knoevenagel condensate Schiff base ligands [L = 3‐cinnamalideneacetylacetone‐thiosemicarbazone (CAT)/3‐cinnama‐ lideneacetylacetoneethylthiosemicarbazone (CAET)/3‐cinnamalideneacetylacetonephenylthiosemicarbazone (CAPT)] and their copper/zinc complexes were synthesized. They were characterized by analytical and spectral techniques. From these data it was found that the ligands adopt square‐planar geometry on metalation with Cu2+ and Zn2+. To evaluate the antitumor and cytotoxic activity of the synthesized complexes in mice and human cancer cell lines, the antitumor activity of the complexes was evaluated against an Ehrlich ascites carcinoma (EAC) tumor model. The activity was assessed using survival time and short‐term in vitro cytotoxic activity. Oral administration of complexes (100 mg/kg) increased the survival time. The cytotoxic activity of complexes was evaluated using human breast cancer (MDA‐MB‐231), colon cancer (HCT‐116) and nonsmall lung cancer (NCI‐H‐23) cell lines. Both the complexes possessed significant antitumor and cytotoxic activity on EAC and human cancer cell lines. The in vitro antimicrobial screening effect of the investigated compounds was also tested against the various organisms by well diffusion method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Acetato, chloro and nitrato Cu(II) complexes of a novel azo compound, namely 2,4‐dihydroxy‐5‐[(5‐mercapto‐1H‐1,2,4‐triazole‐3‐yl)diazenyl]benzaldehyde, have been prepared. The stoichiometry, stereochemistry and bonding fashion of these copper chelates were deduced via elemental analyses, spectral methods and conductivity and magnetic measurements. Infrared spectral data confirmed the participation of azo N atom and the deprotonated OH group. UV–visible spectral data and magnetic measurements indicated octahedral stereo‐structure for the acetato and nitrato compounds and square planer for the chloro compound. Thermogravimetric analysis was applied to investigate the thermal degradation of the metal chelates. The thermo‐kinetic parameters were computed. The molecular modeling technique was used to support the predicted geometry of the prepared chelates. The interaction between the Cu(II) complexes and calf thymus DNA was studied using two techniques: absorption and viscosity measurements. The values of binding constant obtained from the absorption spectral method were calculated and found to be 4.23 × 104, 26.93 × 104, 13.01 × 104 and 5.36 × 104 M?1 for ligand and acetato, chloro and nitrato complexes, respectively. The antimicrobial activities were evaluated against various bacterial and fungi strains. The in vitro antitumor efficacy of the synthesized compounds was investigated against the HEPG2 cell line.  相似文献   

19.
Three heteroleptic copper(II) complexes of the type [Cu(L1–3)(cf)(ClO4)] ( 1 – 3 ), where cf = ciprofloxacin, have been synthesized using pyridazine‐based ligands 3‐chloro‐6‐(salicylidenehydrazinyl)pyridazine (HL1), 3‐chloro‐6‐(4‐diethylaminosalicylidenehydrazinyl)pyridazine (HL2) and 3‐chloro‐6‐(5‐bromosalicylidenehydrazinyl)pyridazine (HL3). Electronic spectral data and magnetic moment values suggest octahedral geometry for the synthesized copper(II) complexes. Electrochemical data of the copper(II) complexes present an irreversible one‐electron reduction wave in the cathodic potential region (Epc) between ?0.631 and ?0.670 V. Frontier molecular orbital calculations were carried out, and the obtained low‐energy gap supports the bio‐efficacy of the complexes. All the complexes were screened for their in vitro cytotoxicity activity against three human cancerous (breast adenocarcinoma (MCF‐7), hepatoma (HepG‐2) and cervical (HeLa)) and one non‐cancerous (non‐tumorigenic human dermal fibroblast (NHDF)) cell lines using MTT assay, in which complex 2 exhibited higher activity. The apoptosis induction by the complexes was analysed using the Hoechst dye staining method with MCF‐7 cell line, which indicates higher apoptotic activity of complex 2 . A molecular docking study was carried out to ascertain the binding affinity of the synthesized heteroleptic copper(II) complexes with phosphoinositide 3‐kinase gamma (PI3Kγ) receptor.  相似文献   

20.
Copper(I) complexes of the types [Cu(N–N)(PPh3)2]NO3 (LC41–LC44) and [Cu(N–N)(PPh3)(NO3)] (LC45) carrying 3‐substituted 1‐pyridine‐2‐ylimidazo[1,5‐a]pyridine (N–N) derivatives and triphenylphosphine (PPh3) ligands have been prepared. The synthesized copper(I)–phosphine complexes were fully characterized by NMR, IR, ESI‐MS and UV–visible spectroscopy as well as by cyclic voltammetry. Selected structures such as LC42, LC43 and LC45 were additionally analysed by single‐crystal X‐ray method, which show that copper(I) centre adopts a highly distorted tetrahedral geometry. The 1H and 13C NMR spectral data of the complexes throw light on the nature of metal–ligand bonding. They display dπ–π* metal‐to‐ligand charge transfer (MLCT) transition and show quasireversible CuI/CuII metal oxidation. Among the copper(I)–phosphine complexes, LC41–LC44 exhibit moderate cytotoxicity (IC50: 24 h, 67–74 μM; 48 h, 58–70 μM) against human lung epithelial adenocarcinoma A549 cells, whereas LC45 displays the best activity (IC50: 24 h, 42 μM; 48 h, 34 μM) for A549 cancer cell line, which is better than that of the commercial antitumor drug cisplatin. All the complexes also displayed excellent selectivity by being relatively inactive against the human lung epithelial L132 normal cell line with selectivity index (SI) values ranging from 3.4 to 7.4. The complexes block cell cycle progression of A549 cells in G0/G1 phase. FACSVerse analyses are suggestive of reactive oxygen species (ROS) generation and apoptotic cell death induced by the LC41, LC43 and LC45. The induction of apoptosis in A549 cells was shown by Annexin V with propidium iodide (PI) and 4′,6‐diamidino‐2‐phenylindole (DAPI) staining methods and established the ability of LC41, LC43 and LC45 to accumulate in the cell nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号