首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A copper catalyst has been explored as an efficient and recyclable catalyst to effect Sonogashira and Suzuki cross‐coupling reactions. After modification of 2‐(((piperazin‐1‐ylmethyl)imino)methyl)phenol (PP) on the surface of amorphous silica‐coated iron oxide (Fe3O4@SiO2@Cl) magnetic core–shell nanocomposite, copper(II) chloride was employed to synthesize the Fe3O4@SiO2@PP‐Cu catalyst, affording a copper loading of 1.52 mmol g−1. High yield, low reaction times, non‐toxicity and recyclability of the catalyst are the main merits of this protocol. The catalyst was characterized using Fourier transform infrared, X‐ray photoelectron, energy‐dispersive X‐ray and inductively coupled plasma optical emission spectroscopies, X‐ray diffraction, scanning and transmission electron microscopies, and vibrating sample magnetometry.  相似文献   

2.
Supported ruthenium hydroxide catalysts (Ru(OH)x/support) were prepared with three different TiO2 supports (anatase TiO2 (TiO2(A), BET surface area: 316 m2 g?1), anatase TiO2 (TiO2(B), 73 m2 g?1), and rutile TiO2 (TiO2(C), 3.2 m2 g?1)), as well as an Al2O3 support (160 m2 g?1). Characterizations with X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), electron spin resonance (ESR), and X‐ray absorption fine structure (XAFS) showed the presence of monomeric ruthenium(III) hydroxide and polymeric ruthenium(III) hydroxide species. Judging from the coordination numbers of the nearest‐neighbor Ru atoms and the intensities of the ESR signals, the amount of monomeric hydroxide species increased in the order of Ru(OH)x<Ru(OH)x/TiO2(C)<Ru(OH)x/Al2O3<Ru(OH)x/TiO2(B)<Ru(OH)x/TiO2(A). These supported ruthenium hydroxide catalysts, especially Ru(OH)x/TiO2(A), showed high catalytic activities and selectivities for liquid‐phase hydrogen‐transfer reactions, such as racemization of chiral secondary alcohols and the reduction of carbonyl compounds and allylic alcohols. The catalytic activities of Ru(OH)x/TiO2(A) for these hydrogen‐transfer reactions were at least one order of magnitude higher than those of previously reported heterogeneous catalysts, such as Ru(OH)x/Al2O3. These catalyses were truly heterogeneous, and the catalysts recovered after the reactions could be reused several times without loss of catalytic performance. The reaction rates monotonically increased with an increase in the amount of monomeric ruthenium hydroxide species, which suggests that the monomeric species are effective for these hydrogen‐transfer reactions.  相似文献   

3.
A new electrochemical sensor based on Fe3O4@SiO2‐PANI‐Au nanocomposite was fabricated for modification of glassy carbon electrode (Fe3O4@SiO2‐PANI‐Au GCE). The Fe3O4@SiO2‐PANI‐Au nanocomposite was characterized by TEM, FESEM‐EDS‐Mapping, XRD, and TGA methods. The Fe3O4@SiO2‐PANI‐Au GC electrode exhibited an acceptable sensitivity, fast electrochemical response, and good selectivity for determination of quercetin. Under optimal conditions, the linear range for quercetin concentrations using this sensor was 1.0×10?8 to 1.5×10?5 mol L?1, and the limit of detection was 3.8×10?9 mol L?1. The results illustrated that the offered sensor could be a possible alternative for the measurement of quercetin in food samples and biological fluids.  相似文献   

4.
A type of fluorescent–magnetic dual‐function nanocomposite, Fe3O4@SiO2@P‐2, was successfully obtained by Cu+‐catalyzed click reaction between acetylene (C?C? H)‐substituted carbazole‐based conjugated polymer ( P‐2) and azide‐terminated silica‐coated magnetic iron oxide nanoparticles (Fe3O4@SiO2–N3). Optical and magnetization analyses indicate that Fe3O4@SiO2@P‐2 exhibits stable fluorescence and rapid magnetic response. The fluorescence of Fe3O4@SiO2@P‐2 was quenched significantly in the presence of I? and gave a detection limit (DL) of ~8.85 × 10?7 M. Given the high binding constant and matching ratio between Hg2+ and I?, the fluorescence of Fe3O4@SiO2@P‐2/I? complex recovered efficiently with the addition of Hg2+. A DL of ~4.17 × 10?7 M was obtained by this probing system. Recycling of Fe3O4@SiO2@P‐2 probe was readily achieved by simple magnetic separation. Results indicate that Fe3O4@SiO2@P‐2 can be used as an “on–off–on” fluorescent switchable and recyclable Hg2+ probe. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3636–3645  相似文献   

5.
In this research, a facile one‐pot synthesis of poly‐substituted quinoline derivatives has been demonstrated by using 2‐aminobenzophenones and ethylacetoacetate or ketones in the presence of Fe3O4@SiO2‐imid‐PMAn and Fe3O4@SiO2‐imid‐PMAb nanoparticles as green and reusable catalysts under solvent‐free conditions. The reaction proceeds efficiently in excellent yields and in a state of excellent purity. The nanocatalysts can be recycled and reused for at least four times without noticeably decreasing in catalytic activity.  相似文献   

6.
Catalytic trimerization of ethylene using three titanium‐based complexes [η5‐C9H6C(R)thienyl]TiCl3 with various types of bridges (R = cyclo‐C5H10 ( C1 ), cyclo‐C4H8 ( C2 ) and (CH3)2 ( C3 )) has been successfully optimized and compared. First of all, three benzofulvene precursors, C9H6C(R), were synthesized. Then the corresponding indenyl‐based ligands were obtained via the reaction of the precursors with thienyllithium. The final titanium‐based catalysts display a distorted tetrahedral geometry, as expected for Ti(IV), with the ligand coordinated with a hemilabile behaviour. The structures of the compounds were confirmed on the basis of various analyses. The effect of catalyst concentration, ethylene pressure, reaction temperature and nature of the bridge as the significant factor affecting coordination and orientation of thienyl group relative to the metal centre on 1‐hexene (1‐C6) productivity and selectivity was investigated. Results revealed that the bulky bridge groups such as cyclo‐C5H10 and cyclo‐C4H8 are appropriate for ethylene trimerization due to the closer coordination of sulfur atom with Ti, especially in cationic state, and catalyst C2 with cyclo‐C4H8 bridge exhibits moderate productivity equal to 785 kg 1‐C6 (mol Ti)?1 h?1. According to the results, ethylene at a pressure of 10 bar, 50°C and 1.5 μmol of catalyst were selected as the best conditions for obtaining 1‐C6 with high productivity and selectivity. The presence of indenyl enhances the thermal stability of the catalysts and preserves their activity in higher temperatures such as 50 and 80°C.  相似文献   

7.
Polyethersulfone (PES) and poly(1‐vinylpyrrolidone) (PVP) were used to prepare ultrafiltration membranes with grafted Fe3O4 magnetic nanoparticles (PVP‐g‐Fe3O4@SiO2). The structure of synthesized PVP‐g‐Fe3O4@SiO2 was confirmed by FT‐IR and SEM analysis. Physical properties of blend membranes such as thermal resistance, Tensile strength, water uptake, and hydrophilicity were also investigated. Blended membranes of PES/PVP‐g‐Fe3O4@SiO2 have exhibited higher thermal resistance due to increasing the modified nanoparticle content. The hydrophilicity of the synthesized PES/PVP‐g‐Fe3O4@SiO2 membranes also improved by increasing the PVP‐g‐Fe3O4@SiO2 content. As expected, increasing the hydrophilicity of blended membrane, caused enhancement of fouling resistance in membranes. Results showed that the content of PVP‐g‐Fe3O4@SiO2 has different effects on the properties of synthesized composite membranes. Despite increasing the content of PVP‐g‐Fe3O4@SiO2 has a negative effect on elongation, positive effects on maximum stress was observed. Moreover, the water uptake of synthesized membranes was significantly enhanced in comparison to other similar studies.  相似文献   

8.
Novel Pd nanoparticles were prepared in five successive stages: 1) preparation of the Fe3O4 magnetic nanoparticles (Fe3O4 MNPs), 2) coating of Fe3O4 MNPs with SiO2 (Fe3O4@SiO2), 3) functionalization of Fe3O4@SiO2 with 3‐chloropropyltrimethoxy‐ silane (CPTMS) ligand (Fe3O4@SiO2@CPTMS), 4) further functionalization with 3,5‐diamino‐1,2,4‐triazole (DAT) ligand (Fe3O4@SiO2@CPTMS @DAT), and 5) the complexation of Fe3O4@SiO2@CPTMS@DAT with PdCl2 (Fe3O4@SiO2@CPTMS@ DAT@Pd). Then, the obtained Pd nano‐catalyst characterized by different methods such as the elemental analysis (CHN), FT‐IR, XRD, EDX, SEM, TEM, TG‐DTA and VSM. Finally, the Pd catalyst was applied for the synthesis of various 2‐imino‐3‐phenyl‐2,3‐dihydrobenzo[d]oxazol‐5‐ols.  相似文献   

9.
The catalytic activity of two magnetic catalysts Fe3O4@SiO2@DOPisatin‐M(II) (M = Ni, Cu) was investigated in the environmentally green H2O2 oxidant‐based oxidation of sulfides to sulfoxides and oxidative coupling of thiols to disulfides. By using these catalysts, various substrates were successfully converted into their corresponding product. These catalysts could also be reused multiple time without significant loss of activity. The physical and chemical properties of the catalysts were determined using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), energy dispersive X‐ray spectroscopy (EDX) and atomic absorption spectroscopy (AAS).  相似文献   

10.
An amino‐functionalized silica‐coated Fe3O4 nanocomposite (Fe3O4@SiO2/APTS) was synthesized. The Fe3O4@SiO2 microspheres possessed a well‐defined core–shell structure, uniform sizes and high magnetization. An immobilized ruthenium nanoparticle catalyst (Fe3O4@SiO2/APTS/Ru) was obtained after coordination and reduction of Ru3+ on the Fe3O4@SiO2/APTS nanocomposite. The Ru nanoparticles were not only ultra‐small with nearly monodisperse sizes but also had strong affinity with the surface of Fe3O4@SiO2/APTS. The obtained catalyst exhibited excellent catalytic performance for the hydrogenation of a variety of aromatic nitro compounds, even at room temperature. Moreover, Fe3O4@SiO2/APTS/Ru was easily recovered using a magnetic field and directly reused for at least five cycles without significant loss of its activity.  相似文献   

11.
This study describes the synthesis and characterization of ethylenediaminetetraacetic acid (EDTA) functionalized magnetic nanoparticles of 20 nm in size – Fe3O4@SiO2‐EDTA – which were used as a novel magnetic adsorbent for Cd(II) and Pb(II) binding in aqueous medium. These nanoparticles were obtained in two‐stage synthesis: covering by tetraethyl orthosilicate and functionalization with EDTA derivatives. Nanoparticles were characterized using TEM, FT‐IR, and XPS methods. Metal ions were detected under optimized experimental conditions using Differential Pulse Anodic Stripping Voltammetry (DPASV) and Hanging Mercury Drop Electrode (HDME) techniques. We compared the ability of Fe3O4@SiO2‐EDTA to bind cadmium and lead in concentration of 553.9 μg L?1 and 647.5 μg L?1, respectively. Obtained results show that the adsorption rate of cadmium binding was very high. The equilibrium for Fe3O4@SiO2‐EDTA‐Cd(II) was reached within 19 min while for the Fe3O4@SiO2‐EDTA‐Pb(II) was reached within 25 minutes. About 2 mg of nanoparticles was enough to bind 87.5 % Cd(II) and 54.1 % Pb(II) content. In the next step the binding capacity of Fe3O4@SiO2‐EDTA nanoparticles was determined. Only 1.265 mg of Fe3O4@SiO2‐EDTA was enough to bind 96.14 % cadmium ions while 5.080 mg of nanoparticles bound 40.83 % lead ions. This phenomenon proves that the studied nanoparticles bind Cd(II) much better than Pb(II). The cadmium ions binding capacity of Fe3O4@SiO2‐EDTA nanoparticles decreased during storage in 0.5 M KCl solution. Two days of Fe3O4@SiO2‐EDTA storage in KCl solution caused the 32 % increase in the amount of nanoparticles required to bind 60 % of cadmium while eight‐days storage caused further increase to 328 %. The performed experiment confirmed that the storage of nanoparticles in solution without any surfactants reduced their binding capacity. The best binding capacity was observed for the nanoparticles prepared directly before the electrochemical measurements.  相似文献   

12.
We report a simple process for the synthesis of Fe3O4@SiO2/APTMS (APTMS = 3‐aminopropyltrimethoxysilane) core–shell nanocatalyst support. The new nanocatalyst was prepared by stabilization of Pd(cdha)2 (cdha = bis(2‐chloro‐3,4‐dihydroxyacetophenone)) on the surface of the Fe3O4@SiO2/APTMS support. The structure and composition of this catalyst were characterized using various techniques. An efficient method was developed for the synthesis of a wide variety of biaryl compounds via fluoride‐free Hiyama cross‐coupling reactions of aryl halides with arylsiloxane, with Fe3O4@SiO2/APTMS/Pd(cdha)2 as the catalyst under reaction conditions. This methodology can be performed at 100°C through a simple one‐pot operation using in situ generated palladium nanoparticles. High catalytic activity, quick separation of catalyst from products using an external magnetic field and use of water as green solvent are attributes of this protocol.  相似文献   

13.
A biosensor based on hemoglobin‐Fe3O4@SiO2 nanoparticle bioconjunctions modified indium‐tin‐oxide (Hb/Fe3O4@SiO2/ITO) electrode was fabricated to determine the concentration of H2O2. UV‐vis absorption spectra, fourier transform infrared (FT‐IR) spectroscopy, cyclic voltammetry (CV) and high‐resolution transmission electron microscopy (HRTEM) were used to characterize the bioconjunction of Fe3O4@SiO2 with Hb. Experimental results demonstrate that the immobilized Hb on the Fe3O4@SiO2 matrix retained its native structure well. In addition, Fe3O4@SiO2 nanoparticles (NPs) are very effective in facilitating electron transfer of the immobilized enzyme, which can be attributed to the unique nanostructure and larger surface area of the Fe3O4@SiO2 NPs. The biosensor displayed good performance for the detection of H2O2 with a wide linear range from 2.03×10?6 to 4.05×10?3 mol/L and a detection limit of 0.32 µmol/L. The resulting biosensor exhibited fast amperometric response, good stability, reproducibility, and selectivity to H2O2.  相似文献   

14.
In recent years ionic liquids (ILs) have attracted much interest because of their widespread use in various fields. Several trimerization and oligomerization catalysts have been evaluated in ILs with different organic–inorganic hybrid structures. High catalytic activity and selectivity, easy product separation, and recycling of the catalyst are the advantages of a biphasic catalyst system compared to the homogeneous catalysts. In this study, the influence of IL counter-anions on activity and selectivity of the ethylene trimerization catalysts based on Cr-SNS-R was investigated. All synthesized materials were characterized using Fourier-transform infrared spectroscopy, 1H NMR, 13C NMR, UV–Vis. spectroscopy, thin-layer chromatography, and elemental analysis (CHNS). In ethylene trimerization reaction, the dodecyl substituent in the SNS ligand exhibited better activity and selectivity than the butyl substituent. The results revealed that the presence of BF4 as a counter-anion in the IL led to an increase in activity and selectivity compared to Br and I counter-anions. It was found that the BF4 counter-anion plays a conclusive role in the development of 1-hexene activity and selectivity to a maximum amount of 71,132 g1-C6/(gCr × h) and more than 99%, respectively. Finally, the catalyst was reused thrice without losing its 1-hexene selectivity.  相似文献   

15.
Functional polymer‐grafting silica nanoparticles hold great promise in diverse applications such as molecule recognition, drug delivery, and heterogeneous catalysis due to high density and uniform distribution of functional groups and their tunable spatial distance. However, conventional grafting methods from monomers mainly consist of one or more extra surface modification steps and a subsequent surface polymerization step. A monomer protonation‐dependent surface polymerization strategy is proposed to achieve one‐step uniform surface grafting of cross‐linked poly(4‐vinylpyridine) (P4VP) onto core–shell Fe3O4@SiO2 nanostructures. At an approximate pH, partially protonated 4VP sites in aqueous solution can be strongly adsorbed onto deprotonated silanol groups ( Si O) onto Fe3O4@SiO2 nanospheres to ensure prior polymerization of these protonated 4VP sites exclusively onto Fe3O4@SiO2 nanoparticles and subsequent polymerization of other 4VP and divinylbenzene monomers harvested by these protonated 4VP monomers onto Fe3O4@SiO2 nanoparticles, thereby achieving direct grafting of cross‐linked P4VP macromolecules onto Fe3O4@SiO2 nanoparticles.  相似文献   

16.
A yolk–shell-structured sphere composed of a superparamagnetic Fe3O4 core and a carbon shell (Fe3O4@HCS) was etched from Fe3O4@SiO2@carbon by NaOH, which was synthesized through the layer-by-layer coating of Fe3O4. This yolk–shell composite has a shell thickness of ca. 27 nm and a high specific surface area of 213.2 m2 g?1. Its performance for the magnetic removal of tetracycline hydrochloride from water was systematically examined. A high equilibrium adsorption capacity of ca. 49.0 mg g?1 was determined. Moreover, the adsorbent can be regenerated within 10 min through a photo-Fenton reaction. A stable adsorption capacity of 44.3 mg g?1 with a fluctuation <10% is preserved after 5 consecutive adsorption–degradation cycles, demonstrating its promising application potential in the decontamination of sewage water polluted by antibiotics.  相似文献   

17.
In this study, a new magnetic hybrid nanomaterials Fe3O4@SiO2@PPh3@Cr2O72− is introduced. First, the magnetic Fe3O4 nanoparticles have been synthesized by co-precipitation method. Then, tetraethyl orthosilicate has been used for production of core–shell nanoparticles Fe3O4@SiO2. The core–shell magnetic nanoparticles system Fe3O4@SiO2 functionalization was synthesized using (3-chloropropyl) trimethoxysilane and triphenylphosphine and the cationic part was prepared for immobilization of anionic part of the Cr (VI) catalysts including Cr2O72−. After immobilization of the catalyst, its structure was detected by using Fourier transform infrared (FT-IR), solid state UV–Vis, elemental analysis, X-ray fluorescence (XRF), X-ray diffraction (XRD) and the particle size and morphology were elaborated by scanning electron microscope (SEM) and XRD. Magnetism properties were quantified by vibrating sample magnetometer (VSM).  相似文献   

18.
Graphitized carbon (GC) and graphene (GE) modified Fe2O3/Li4Ti5O12 (LTO) composites have been synthesized via a solid‐state reaction, respectively. The structure, morphology and electrochemical performance of the materials have also been characterized with X‐ray diffraction (XRD), scanning electron microscope (SEM) with an energy dispersive spectroscopy (EDS) system, X‐ray photoelectron spectrometer (XPS), Fourier transform infrared spectroscopy (FTIR) and electrochemical measurements. The discharge capacities of Fe2O3/LTO, GC/Fe2O3/LTO and GE/Fe2O3/LTO are 100.2 mAh g?1, 207.5 mAh g?1 and 238.9 mAh g?1 after 100 cycles at the current density of 176 mA g?1. The cyclic stability and rate capability are in the order of GE/Fe2O3/LTO > GC/Fe2O3/LTO > Fe2O3/LTO because of the synergistic effect between GC (GE) and Fe2O3/LTO. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A series of metal‐Al2O3 catalysts were prepared simply by the conventional impregnation with Al2O3 and metal chlorides, which were applied to the dehydration of fructose to 5‐hydroxymethylfurfural (HMF). An agreeable HMF yield of 93.1% was achieved from fructose at mild conditions (100°C and 40 min) when employing Cr(III)‐Al2O3 as catalyst in 1‐butyl‐3‐methylimidazolium chloride ([Bmim]Cl). The Cr(III)‐Al2O3 catalyst was characterized via XRD, DRS and Raman spectra and the results clarified the interaction between the Cr(III) and the alumina support. Meanwhile, the reaction solvents ([Bmim]Cl) collected after 1st reaction run and 5th reaction run were analyzed by ICP‐OES and LC‐ITMS and the results confirmed that no Cr(III) ion was dropped off from the alumina support during the fructose dehydration. Notably, Cr(III)‐Al2O3 catalyst had an excellent catalytic performance for glucose and sucrose and the HMF yields were reached to 73.7% and 84.1% at 120°C for 60 min, respectively. Furthermore, the system of Cr(III)‐Al2O3 and [Bmim]Cl exhibited a constant stability and activity at 100°C for 40 min and a favorable HMF yield was maintained after ten recycles.  相似文献   

20.
Multifunctional nanomaterials with task-specific physicochemical properties, especially core?Cshell nanostructures with Fe3O4 core and NH2-functional shells (Fe3O4@SiO2?CNH2), have been extensively investigated as high-performance adsorbents, catalysts and catalyst supports; and in most cases the controllable sol?Cgel technique is the choice for fabrication of this kind of widely applied materials. Herein, we demonstrated that mono-dispersed and spherical Fe3O4@SiO2?CNH2 nanomaterials with magnetic response core, NH2-functional shell structure can be facilely prepared by co-condensation of TEOS with APTMS using a versatile sol?Cgel process. It was shown that the proper usage of APTMS and appropriate pre-hydrolysis time of TEOS were crucial and key steps for formation of highly uniform and desirable amino loading Fe3O4@SiO2?CNH2 materials. The TEOS pre-hydrolysis and the critical time (around 90?min) before the addition of APTMS prove to be vital for uniform structure evolution, while the appropriate concentration of APTMS (~2.28?mmol?L?1 in our system) leads to well-dispersed materials with relatively high loading of amino functionality. The as-prepared Fe3O4@SiO2?CNH2 magnetic nanoparticles prepared under optimum conditions possessing superparamagnetic behavior, uniform core?Cshell structure (~200?nm in diameter), relatively large BET surface area (~138?m2/g) and high incorporation of amino-functionality (~2.90?wt?%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号