首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 642 毫秒
1.
Investigating the synthesis and properties of diiron azadithiolate complexes is one of the key topics for mimicking the active site of [FeFe]‐hydrogenases, which might be very useful for the design of new efficient catalysts for hydrogen production and the development of a future hydrogen economy. A series of new phosphine‐substituted diiron azadithiolate complexes as models for the active site of [FeFe]‐hydrogenases are described. A novel and efficient way was firstly established for the preparation of phosphine‐substituted diiron azadithiolate complexes. The reaction of Fe2(μ‐SH)2(CO)6 and phosphine ligands L affords the intermediate Fe2(μ‐SH)2(CO)5L ( A ). The intermediate reacts in situ with a premixed solution of paraformaldehyde and ammonium carbonate to produce the target phosphine‐substituted diiron azadithiolate complexes Fe2[(μ‐SCH2)2NH](CO)5L ( 1a – 1f ) (L = P(C6H4–4‐CH3)3, P(C6H4–3‐CH3)3, P(C6H4–4‐F)3, P(C6H4–3‐F)3, P(2‐C4H3O)3, PPh2(OCH2CH3)). Furthermore, reactions of the intermediate A with I‐4‐C6H4N(CH2Cl)2 in the presence of Et3N give the phosphine‐substituted diiron azadithiolate complexes Fe2[(μ‐SCH2)2NC6H4–4‐I](CO)5L ( 2a – 2e ) (L = P(C6H4–4‐CH3)3, P(C6H4–3‐CH3)3, P(C6H4–4‐F)3, P(C6H4–3‐F)3, P(2‐C4H3O)3). All the complexes were fully characterized using elemental analysis, IR and NMR spectroscopies and, particularly for 1a , 1c – 1e , 2a and 2c , single‐crystal X‐ray diffraction analysis. In addition, complexes 1a – 1f and 2a – 2e were found to be catalysts for H2 production under electrochemical conditions. Density functional theory calculations were performed for the reactions of Fe2(μ‐SH)2(CO)6 + P(C6H4–4‐CH3)3.  相似文献   

2.
Ten branched polymeric materials (PEI‐P‐Fe2s) derived from polyethyleneimine (PEI) functionalized with [Fe2(CO)5]‐units to mimic [FeFe]‐hydrogenase were prepared. Before the functionalization, PEI was first premodified using diphenylphosphinamine (NPPh2) group. In the premodification, three approaches were employed: (i) using PEI with an average molecular weight of 1800 and 600, respectively; (ii) grafting NPPh2 group by either direct reaction of chlorodiphenylphosphine with PEI or Br(CH2)11OPPh2; and (iii) further premodification with BrCH2COOH after immobilization of the NPPh2 group. Reaction of the premodified PEI with diiron hexacarbonyl complexes, [Fe2(μ‐S)2(CO)6] (1), or [Fe2(μ‐S2C2H4)(CO)6] (3) produced 10 functionalized materials, PEI‐P‐Fe2s. These materials were characterized using a variety of spectroscopic techniques, FTIR, NMR, TGA, and cyclic voltammetry. Spectral comparison with two control complexes, [Fe2(μ‐S)2(CO)5PPh3] (2) and [Fe2(μ‐S2C2H4)(CO)5PPh3] (4), suggested that the immobilized diiron units of PEI‐P‐Fe2s were dominantly pentacarbonyl analogous to complexes 2 and 4, although tetracarbonyl units may also exist because the amine groups of PEI could also be involved in substituting CO, as was the NPPh2 group. The catalysis of these materials on proton reduction was examined in 0.1 mol l?1 [NBut4]BF4/DMF containing acetic acid by using cyclic voltammetry. Our results indicated that both the presence of carboxylic acid and dangling the diiron units at the end of a long aliphatic chain improved catalytic efficiency by one‐fold. The improvement was attributed to the increase in flexibility of the catalytic center and enhancement of proton transfer during the catalysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
热力学稳定的带有大环配体的μ-氧桥联-双铁配合物,由于其两个铁中心之间的有趣的电子结构和磁相互作用而受到广泛关注。μ-氧桥联-双铁席夫碱配合物,[{Fe(tbusalphn)}2(μ-o)] (1)和[{Fe(R,R-salchxn)}2(μ-o)] (2), 通过用咪唑或N-甲基咪唑的水溶液处理相应的单核铁氯化物,Fe(L)Cl,而获得。1和2的晶体结构通过x-射线结构分析而被确定。1属于三斜晶系,P-1空间群。2属于单斜晶系,P21/c空间群。由于1的配体带有庞大的叔丁基取代基,导致形成μ-氧桥联-双铁配合物时的空间拥挤,因此,其Fe-O-Fe夹角为176.5 o,几乎成平角。而2则由于配体上没有庞大的取代基,其Fe-O-Fe夹角为149.6o,明显小于1的Fe-O-Fe夹角。 本文还对两种μ-氧桥联-双铁席夫碱配合物及相应的单核铁氯化物的红外光谱、紫外-可见吸收光谱及圆二色光谱性质进行了研究。与相应的单体铁配合物相比较,生成μ-氧桥联-双铁席夫碱配合物后,出现一新的红外吸收带,归属于νFe-O-Fe振动。有趣的是,其数值与Fe-O-Fe夹角大小相对应。1和2除具有明显不同的Fe-O-Fe夹角外,它们的圆二色光谱却是相似的。 对1和2的磁性质研究表明,在这类化合物中两个铁(III)离子之间存在着强烈的分子内抗铁磁性偶合作用。另外,本文还采用循环伏安法对1和2的电化学性质进行了研究。  相似文献   

4.
Three diiron 1,2-dithiolate complexes with a trans-cinnamate ester have been characterized. Esterification of [Fe2(CO)6{μ-SCH2CH(CH2OH)S}] (1) with trans-cinnamic acid in the presence of N,N′-dicyclohexylcarbodiimide and 4-dimethylaminopyridine afforded [Fe2(CO)6[μ-SCH2CH(CH2O2CCH?=?CHPh)S}] (2) in 94% yield. Carbonyl substitution of 2 with a monophosphine ligand tris(4-fluorophenyl)phosphine or tris(2-methoxyphenyl)phosphine in the presence of Me3NO·2H2O resulted in formation of the corresponding monophosphine-substituted complexes [Fe2(CO)5 {P(C6H4F-4)3}{µ-SCH2CH(CH2O2CCH?=?CHPh)S}] (3) and [Fe2(CO)5{P (C6H4OCH3-2)3}{µ-SCH2CH(CH2O2CCH?=?CHPh)S}] (4) in 79% and 84% yields, respectively. Complexes 2-4 were structurally characterized by elemental analysis, spectroscopy and X-ray crystallography. Moreover, electrochemical properties of 2-4 were investigated.  相似文献   

5.
Diphenyl(3‐methyl‐2‐indolyl)phosphine (C9H8NPPh2, 1 ) gives stable dimeric palladium(II) complexes that contain the phosphine in P,N‐bridging coordination mode. On treating 1 with [Pd(O2CCH3)2], the new complexes [Pd(μ‐C9H7NPPh2)(NCCH3)]2 ( 2 ) or [Pd(μ‐C9H7NPPh2)(μ‐O2CCH3)]2 ( 3 ) were isolated, depending on the solvent used, acetonitrile or toluene, respectively. Further reaction of 3 with the ammonium salt of 1 led to the substitution of one carboxylate ligand to afford [Pd(μ‐C9H7NPPh2)3(μ‐O2CCH3)] ( 4 ), in which the bimetallic unit is bonded by three C9H7NPPh2? moieties and one carboxylate group. Using this methodology, [Pd2(μ‐C6H4PPh2)2(μ‐C9H7NPPh2)(μ‐O2CCX3)] (X=H ( 7 ); X=F ( 8 )) were synthesised from the ortho‐metalated compounds [Pd(C6H4PPh2)(μ‐O2CCX3)]2 (X=H ( 5 ); X=F ( 6 )). Complexes 3 , 4 , 7 , and 8 have been found to be active in the catalytic β‐boration of α,β‐unsaturated esters and ketones under mild reaction conditions. Hindrance of the carbonyl moiety has an influence on the reaction rate, but quantitative conversion was achieved in many cases. More remarkably, when aryl bromides were added to the reaction media, complex 7 induced a highly successful consecutive β‐boration/cross‐coupling reaction with dimethyl acrylamide as the substrate (99 % conversion, 89 % isolated yield).  相似文献   

6.
Heterodialkylation of [Pt2(μ‐S)2(dppp)2] (dppp=Ph2P(CH2)3PPh2) was achieved under high pressure (10 kbar). This enabled the synthesis of rare diplatinum complexes with structurally diverse thiolate bridges, such as [Pt2(μ‐SC5H10CO2CH2CH3)(μ‐SC3H7)‐(dppp)2](PF6)2, which was crystallographically identified. Complete homodialkylation was also achieved under similar conditions (6 kbar at room temperature), thus permitting the isolation of [Pt2(μ‐SC2H4CO2CH2CH3)2(dppp)2]‐(PF6)2. The isolation of these complexes extends the applications of high‐pressure chemistry to thiolato homo‐ and heterobridged complexes that are otherwise not accessible.  相似文献   

7.
The first quaternary ammonium‐group‐containing [FeFe]‐hydrogenase models [(μ‐PDT)Fe2(CO)42‐(Ph2P)2N(CH2)2NMe2BzBr}] ( 2 ; PDT=propanedithiolate) and [(μ‐PDT)Fe2(CO)4{μ‐(Ph2P)2N(CH2)2NMe2BzBr}] ( 4 ) have been prepared by the quaternization of their precursors [(μ‐PDT)Fe2(CO)42‐(Ph2P)2N(CH2)2NMe2}] ( 1 ) and [(μ‐PDT)Fe2(CO)4{μ‐(Ph2P)2N(CH2)2NMe2}] ( 3 ) with benzyl bromide in high yields. Although new complexes 1 – 4 have been fully characterized by spectroscopic and X‐ray crystallographic studies, the chelated complexes 1 and 2 converted into their bridged isomers 3 and 4 at higher temperatures, thus demonstrating that these bridged isomers are thermodynamically favorable. An electrochemical study on hydrophilic models 2 and 4 in MeCN and MeCN/H2O as solvents indicates that the reduction potentials are shifted to less‐negative potentials as the water content increases. This outcome implies that both 2 and 4 are more easily reduced in the mixed MeCN/H2O solvent than in MeCN. In addition, hydrophilic models 2 and 4 act as electrocatalysts and achieve higher icat/ip values and turnover numbers (TONs) in MeCN/H2O as a solvent than in MeCN for the production of hydrogen from the weak acid HOAc.  相似文献   

8.
The conformational isomers endo‐ and exo‐[Mo{η3‐C3H4(CH3)}(η2‐pyS)(CO)(η2‐diphos)] (diphos: dppm = {bis(diphenylphosphino)methane}, 2 ; dppe = {1,2‐bis(diphenylphosphino)ethane}, 3 ) are prepared by reacting the double‐bridged pyridine‐2‐thionate (pyS) complex [Mo{η3‐C3H4(CH3)}(CO)2]212:μ‐pyS)2, 1 with diphos in refluxing acetonitrile. Stereoselectivity of the methallyl, C3H4(CH3), ligand improves the formation of the exo‐conformation of 2 and 3 . Orientations and spectroscopy of these complexes are discussed.  相似文献   

9.
A series of macrocyclic Ni/Fe/S cluster complexes were synthesized and structurally characterized. The macrocyclic type of (diphosphine)Ni‐bridged double butterfly Fe/S complexes [μ‐SCH2CH2OCH2CH2S‐μ][(μ‐S=CS)Fe2(CO)6]2‐[Ni(diphosphine)] ( 1 – 3 ; diphosphine = dppe, dppv, dppb) were prepared by treatment of the dianion [{μ‐SCH2CH2OCH2CH2S‐μ}{(μ‐CO)Fe2(CO)6}2]2–, generated in situ from Fe3(CO)12, Et3N, and HSCH2CH2OCH2CH2SH with excess CS2 followed by treatment of the resulting dianion [{μ‐SCH2CH2OCH2CH2S‐μ}{(μ‐SC=S)Fe2(CO)6}2]2– with (diphosphine)NiCl2. The three complexes 1 – 3 were characterized by elemental analysis and IR, 1H NMR, and 31P NMR spectroscopy. In addition, the molecular structures of 2 and 3 were established by X‐ray crystallography.  相似文献   

10.
Abstract

The reactions of the starting complex, [Fe2(CO)6{μ-SCH2CH (CH2CH3)S}] (1), with the phosphine ligands tris(4-methylphenyl)phosphine, diphenyl-2-pyridylphosphine, tris(4-fluorophenyl)phosphine, 2-(diphenylphosphino)benzaldehyde, or benzyldiphenylphosphine in the presence of the decarbonylating agent Me3NO·2H2O yielded the corresponding phosphine-substituted diiron butane-1,2-dithiolate complexes [Fe2(CO)5(L){μ-SCH2CH(CH2CH3)S}] (L?=?P(4-C6H4CH3)3, 2; Ph2P(2-C5H4N), 3; P(4-C6H4F)3, 4; Ph2P(2-C6H4CHO), 5; Ph2PCH2Ph, 6) in 75%–87% yields. The complexes have been characterized by elemental analysis, IR, 1H, and 31P{1H} NMR spectroscopy, as well as by single-crystal X-ray diffraction analysis. Moreover, the electrochemistry of 24 was studied by cyclic voltammetry, suggesting that they can catalyze the reduction of protons to H2 in the presence of HOAc.  相似文献   

11.
Four diiron toluenedithiolate complexes 25 with monophosphine ligands are reported. Treatment of [μ-SC6H3(CH3)S-μ]Fe2(CO)6 (1) with tris(3-chlorophenyl)phosphine, tris(4-chlorophenyl)phosphine, tris(4-methylphenyl)phosphine or 2-(diphenylphosphino)benzaldehyde, and Me3NO?2H2O in MeCN resulted in the formation of [μ-SC6H3(CH3)S-μ]Fe2(CO)5[P(3-C6H4Cl)3] (2), [μ-SC6H3(CH3)S-μ]Fe2(CO)5[P(4-C6H4Cl)3] (3), [μ-SC6H3(CH3)S-μ]Fe2(CO)5[P(4-C6H4CH3)3] (4), and [μ-SC6H3(CH3)S-μ]Fe2(CO)5[Ph2P(2-C6H4CHO)] (5) in 64–82% yields. Complexes 25 have been characterized by elemental analysis, IR, 1H NMR, 31P{1H} NMR, 13C{1H} NMR and further confirmed by single crystal X-ray diffraction analysis. The molecular structures show that 25 contain a butterfly diiron toluenedithiolate cluster coordinated by five terminal carbonyls and an apical monophosphine.  相似文献   

12.
In the crystals of the five title compounds, tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(ethanol‐O)dicopper(II)–ethanol (1/2), [Cu2(C6H11O2)4(C2H6O)2]·2C2H6O, (I), tetrakis(μ‐3,3‐dimethylbutyrato‐O:O′)bis(2‐methylpyridine‐N)di­copper(II), [Cu2(C6H11O2)4(C6H7N)2], (II), tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(3‐methylpyridine‐N)di‐copper(II), [Cu2(C6H11O2)4(C6H7N)2], (III), tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(4‐methylpyridine‐N)di‐copper(II), [Cu2(C6H11O2)4(C6H7N)2], (IV), and tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(3,3‐dimethylbutyric acid‐O)dicopper(II), [Cu2(C6H11O2)4(C6H12O2)2], (V), the di­nuclear CuII complexes all have centrosymmetric cage structures and (IV) has two independent molecules. The Cu?Cu separations are: (I) 2.602 (3) Å, (II) 2.666 (3) Å, (III) 2.640 (2) Å, (IV) 2.638 (4) Å and (V) 2.599 (1) Å.  相似文献   

13.
Thermolysis of [Cp*Ru(PPh2(CH2)PPh2)BH2(L2)] 1 (Cp*=η5‐C5Me5; L=C7H4NS2), with terminal alkynes led to the formation of η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)B{R‐C=CH2}(L)2] ( 2 a – c ) and η2‐vinylborane complexes [Cp*Ru(R‐C=CH2)BH(L)2] ( 3 a – c ) ( 2 a , 3 a : R=Ph; 2 b , 3 b : R=COOCH3; 2 c , 3 c : R=p‐CH3‐C6H4; L=C7H4NS2) through hydroboration reaction. Ruthenium and the HBCC unit of the vinylborane moiety in 2 a – c are linked by a unique η4‐interaction. Conversions of 1 into 3 a – c proceed through the formation of intermediates 2 a – c . Furthermore, in an attempt to expand the library of these novel complexes, chemistry of σ‐borane complex [Cp*RuCO(μ‐H)BH2L] 4 (L=C7H4NS2) was investigated with both internal and terminal alkynes. Interestingly, under photolytic conditions, 4 reacts with methyl propiolate to generate the η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)BH{R‐C=CH2}(L)] 5 and [Cp*Ru(μ‐H)BH{HC=CH‐R}(L)] 6 (R=COOCH3; L=C7H4NS2) by Markovnikov and anti‐Markovnikov hydroboration. In an extension, photolysis of 4 in the presence of dimethyl acetylenedicarboxylate yielded η4‐σ,π‐borataallyl complex [Cp*Ru(μ‐H)BH{R‐C=CH‐R}(L)] 7 (R=COOCH3; L=C7H4NS2). An agostic interaction was also found to be present in 2 a – c and 5 – 7 , which is rare among the borataallyl complexes. All the new compounds have been characterized in solution by IR, 1H, 11B, 13C NMR spectroscopy, mass spectrometry and the structural types were unequivocally established by crystallographic analysis of 2 b , 3 a – c and 5 – 7 . DFT calculations were performed to evaluate possible bonding and electronic structures of the new compounds.  相似文献   

14.
[Cp°MoCl4] (Cp° = C5EtMe4) reacts with primary phosphines PH2R to give the paramagnetic phosphine complexes [Cp°MoCl4(PH2R)] [Cp° = C5EtMe4, R = But ( 1 ), 1‐Ad (1‐Ad = 1‐adamantyl; 2 ), Cy ( 3 ), Ph ( 4 ), Mes (Mes = 2, 4, 6‐Me3C6H2; 5 ), Tipp (Tipp = 2, 4, 6‐Pri3C6H2; 6 )]. 1 — 6 were characterized spectroscopically (IR, MS), and X‐ray crystal structures were determined for 1 — 4 and 6 . EPR investigations in liquid and frozen solution confirmed the presence of MoV species, and the data were used to analyze the spin‐density distribution in the first coordination sphere. Complexes 3 and 4 react with two equivalents of NEt3 with formation of [Cp°MoCl23‐P4Cy4H)] ( 7 ) and [Cp°2Mo2(μ‐Cl)2(μ‐P4Ph4)] ( 8 ), respectively, in low yield. Complexes 7 and 8 were characterized by X‐ray crystallography.  相似文献   

15.
Three new triruthenium clusters, Ru3(CO)9(μ‐arphos)AsPh3 ( 1 ), Ru3(CO)9(μ‐arphos)As(m‐C6H4Me)3 ( 2 ), and Ru3(CO)9(μ‐arphos)As(p‐C6H4Me)3 ( 3 ) were synthesized via thermal reactions of Ru3(CO)10(μ‐arphos) with different tertiary arsine ligands [AsPh3, As(m‐C6H4Me)3, As(p‐C6H4Me)3]. All these complexes were fully characterized by elemental analysis, FT‐IR, NMR spectroscopy, and single‐crystal X‐ray diffraction.  相似文献   

16.
Treatment of Co4(CO)12 with an excess of trimethylsilylacetylene (TMSA) in the presence of tri(2‐thienyl)phosphine in THF at 25 °C for 2 hours yielded six compounds. Two pseudo‐octahedral, alkyne‐bridged tetracobalt clusters, [Co44‐η2‐HC≡CSiMe3)(CO)10(μ‐CO)2] ( 4 ) and [Co44‐η2‐HC≡CSiMe3)‐(CO)9(μ‐CO)2{P(C4H4S)3}] ( 6 ), along with an alkyne‐bridged dicobalt complex, [Co2(CO)5(μ‐HC≡CSiMe3)‐{P(C4H4S)3}] ( 5 ), were obtained as new compounds. The addition of the thienylphosphine ligand, in fact, facilitates the reaction rate. Reaction of an alkyne‐bridged dicobalt complex, [(η2‐H‐C≡C‐SiMe3)Co2(CO)6] ( 3 ), with a bi‐functional ligand, PPh(‐C≡C‐SiMe3)2, yielded an unexpected six‐membered, cyclic compound, {(Ph)(Me3Si‐C≡C)P‐[(η2‐C≡C‐SiMe3)Co2(CO)5]}2 ( 7 ). All of these new compounds were characterized by spectroscopic means; the solid‐state structures of ( 5 ), ( 6 ) and ( 7 ) have been established by X‐ray crystallography.  相似文献   

17.
On the Reactivity of Alkylthio Bridged 44 CVE Triangular Platinum Clusters: Reactions with Bidentate Phosphine Ligands The 44 cve (cluster valence electrons) triangular platinum clusters [{Pt(PR3)}3(μ‐SMe)3]Cl (PR3 = PPh3, 2a ; P(4‐FC6H4)3, 2b ; P(n‐Bu)3, 2c ) were found to react with PPh2CH2PPh2 (dppm) in a degradation reaction yielding dinuclear platinum(I) complexes [{Pt(PR3)}2(μ‐SMe)(μ‐dppm)]Cl (PR3 = PPh3, 3a ; P(4‐FC6H4)3, 3b ; P(n‐Bu)3; 3e ) and the platinum(II) complex [Pt(SMe)2(dppm)] ( 4 ), whereas the addition of PPh2CH2CH2PPh2 (dppe) to cluster 2a afforded a mixture of degradation products, among others the complexes [Pt(dppe)2] and [Pt(dppe)2]Cl2. On the other hand, the treatment of cluster 2a with PPh2CH2CH2CH2PPh2 (dppp) ended up in the formation of the cationic complex [{Pt(dppp)}2(μ‐SMe)2]Cl2 ( 5 ). Furthermore, the terminal PPh3 ligands in complex 3a proved to be subject to substitution by the stronger donating monodentate phosphine ligands PMePh2 and PMe2Ph yielding the analogous complexes [{Pt(PR3)}2(μ‐SMe)(μ‐dppm)]Cl (PR3 = PMePh2, 3c ; PMe2Ph, 3d ). NMR investigations on complexes 3 showed an inverse correlation of Tolmans electronic parameter ν with the coupling constants 1J(Pt,P) and 1J(Pt,Pt). All compounds were fully characterized by means of NMR and IR spectroscopy. X‐ray diffraction analyses were performed for the complexes [{Pt{P(4‐FC6H4)3}}2(μ‐SMe)(μ‐dppm)]Cl ( 3b ), [Pt(SMe)2(dppm)] ( 4 ), and [{Pt(dppp)}2(μ‐SMe)2]Cl2 ( 5 ).  相似文献   

18.
Three diiron and tetrairon azadithiolate complexes as models for the active site of [FeFe] hydrogenase were prepared. Reaction of complex Fe2(SCH2OH)2(CO)6 and NH2CH2CH2CH2OCH3 resulted in the diiron azadithiolate hexcarbonyl complex Fe2[(SCH2)2NCH2CH2CH2OCH3](CO)6 ( 1 ) in moderate yield. Furthermore, treatment of complex 1 with mono phosphine ligand PPh3 and diphosphine ligand Ph2PCH2CH2PPh2 in the presence of decarbonylation reagent Me3NO · 2H2O yielded the phosphine‐substituted azadithiolate complexes Fe2[(SCH2)2NCH2CH2CH2OCH3]CO)5(PPh3) ( 2 ) and {Fe2[(SCH2)2NCH2CH2CH2OCH3](CO)5}2(Ph2PCH2CH2PPh2) ( 3 ) respectively. The new complexes 1 – 3 were fully characterized by elemental analysis, IR, 1H, 13C, 31P NMR spectroscopy and X‐ray crystallography. It is worthy to note that the crystallographic studies show the unusual difference of the methoxypropanyl substituent on the N atom of complexes 1 and 2 , largely because of the affection of phosphine ligand PPh3. In addition, complex 1 was found to be a catalyst for H2 production under electrochemical condition.  相似文献   

19.
Four new monomeric Pd (II) complexes with formulas [Pd(C,N)‐(2′‐NH2C6H4)C6H4 (N3)(L)] ( A ), ( B ) and [Pd(C,N)‐C6H4CH2NH(C4H9)(N3)(L)] ( C ), ( D ), [L = isonicotinamide for ( A ) and ( C ), L = 4‐N,N‐dimethylaminopyridine for ( B ) and ( D )] have been synthesized using four initial dimers [Pd2{(C,N)‐(2′‐NH2C6H4)C6H4}2(μ‐OAc)2] ( 1 ), [Pd2{(C,N)‐ (2′‐NH2C6H4)C6H4}2(μ‐N3)2] ( 3 ) for A and C , and [Pd2{(C,N)‐C6H4CH2NH(C4H9)}2(μ‐OAc)2] ( 2 ) and [Pd2{(C,N)‐C6H4CH2NH(C4H9)}2(μ‐N3)2] ( 4 ) for B and D . Then synthesized complexes have been characterized by Fourier transform‐infrared, NMR spectroscopy and thermal gravimetric‐differential thermal analysis. Furthermore, UV–Vis spectroscopy, fluorescence spectroscopy, circular dichroism (CD) and helix melting temperature measurements have been employed to study the binding interaction of them with calf thymus‐deoxyribonucleic acid (DNA). The results reveal that all synthesized complexes can interact with DNA via groove‐binding mode. Bovine serum albumin (BSA)‐binding studies have been carried out using UV–Vis spectroscopy, emission titration and CD. However, competitive binding studies using warfarin, ibuprofen and digoxin on site markers demonstrated that the complexes bind to different sites on BSA. The results also indicated that the binding site was mainly located within site‐III for complex A , and site‐I for complexes B , C and D of BSA. In addition, molecular docking studies have been executed to determine the binding site of the DNA and BSA with complexes. Eventually, in vitro cytotoxicity of synthesized palladium complexes and cisplatin were carried out against human promyelocytic leukemia cancer (Hela) and breast cancer (MCF‐7) cell lines. Pursuant to the IC50 values, the cytotoxicity of complexes against MCF‐7 was more than Hela.  相似文献   

20.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)4(μ‐PCy2)2(μ‐Ph2PCH2PPh2)(μ3‐S){μ3‐η2‐CSC(S)S}] [Ru3(CO)4(μ‐H)3(μ‐PCy2)3(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2) reacts with CS2 at room temperature and yields the open 50 valence electron cluster [Ru3(CO)4(μ‐PCy2)2(μ‐dppm)(μ3‐S){μ3‐η2‐CSC(S)S}] ( 3 ) containing the unusual μ3‐η2‐C2S3 mercaptocarbyne ligand. Compound 3 was characterized by single crystal X‐ray structure analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号