首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Imidazolium salts, [RS(O)? CH2(C3H3N2)Mes]Cl (R=Me ( L1 a ), Ph ( L1 b )); Mes=mesityl), make convenient carbene precursors. Palladation of L1 a affords the monodentate dinuclear complex, [(PdCl2{MeS(O)CH2(C3H2N2)Mes})2] ( 2 a ), which is converted into trans‐[PdCl2(NHC)2] (trans‐ 4 a ; N‐heterocyclic carbene) with two rotamers in anti and syn configurations. Complex trans‐ 4 a can isomerize into cis‐ 4 a (anti) at reflux in acetonitrile. Abstraction of chlorides from 4 a or 4 b leads to the formation of a new dication: trans‐[Pd{RS(O)CH2(C3H2N2)Mes}2](PF6)2 (R=Me ( 5 a ), Ph ( 5 b )). The X‐ray structure of 5 a provides evidence that the two bidentate SO? NHC ligands at palladium(II) are in square‐planar geometry. Two sulfoxides are sulfur‐ and oxygen‐bound, and constitute five‐ and six‐membered chelate rings with the metal center, respectively. In acetonitrile, complexes 5 a or 5 b spontaneously transform into cis‐[Pd(NHC)2(NCMe)2](PF6)2. Similar studies of thioether–NHCs have also been examined for comparison. The results indicate that sulfoxides are more labile than thioethers.  相似文献   

2.
The complex [Pd(O,N,C‐L)(OAc)], in which L is a monoanionic pincer ligand derived from 2,6‐diacetylpyridine, reacts with 2‐iodobenzoic acid at room temperature to afford the very stable pair of PdIV complexes (OC‐6‐54)‐ and (OC‐6‐26)‐[Pd(O,N,C‐L)(O,C‐C6H4CO2‐2)I] (1.5:1 molar ratio, at ?55 °C). These complexes and the PdII species [Pd(O,N,C‐L)(OX)] and [Pd(O,N,C‐L′)(NCMe)]ClO4, (X=MeC(O) or ClO3, L′=another monoanionic pincer ligand derived from 2,6‐diacetylpyridine), are precatalysts for the arylation of CH2?CHR (R?CO2Me, CO2Et, Ph) using IC6H4CO2H‐2 and AgClO4. These catalytic reactions have been studied and a tentative mechanism is proposed. The presence of two PdIV complexes was detected by ESI(+)‐MS during the catalytic process. All the data obtained strongly support a PdII/PdIV catalytic cycle.  相似文献   

3.
Although it has not proved possible to crystallize the newly prepared cyclam–methylimidazole ligand 1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane (LIm1), the trans and cis isomers of an NiII complex, namely trans‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) monohydrate, [Ni(C15H30N6)(H2O)](ClO4)2·H2O, (1), and cis‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate), [Ni(C15H30N6)(H2O)](ClO4)2, (2), have been prepared and structurally characterized. At different stages of the crystallization and thermal treatment from which (1) and (2) were obtained, a further two compounds were isolated in crystalline form and their structures also analysed, namely trans‐{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}(perchlorato)nickel(II) perchlorate, [Ni(ClO4)(C15H30N6)]ClO4, (3), and cis‐{1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) 0.24‐hydrate, [Ni(C20H36N6)](ClO4)2·0.24H2O, (4); the 1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane ligand is a minor side product, probably formed in trace amounts in the synthesis of LIm1. The configurations of the cyclam macrocycles in the complexes have been analysed and the structures are compared with analogues from the literature.  相似文献   

4.
The palladacycle [Pd(μ-O2CMe){κ2C,N-4-MeC6H3N(Me)NO}]2 readily undergoes bridge cleavage reactions with a variety of compounds containing donor functionalities including thioamides, 8-hydroxyquinoline, thioureas, selenoureas, acetylacetone derivatives, dithiocarbamates, xanthates, as well as bidentate N-donors to afford either the monomeric, neutral Pd(II) complexes [Pd{κ2C,N-4-MeC6H3N(Me)NO}{L-L}] or the monocationic complexes [Pd{κ2C,N-4-MeC6H3N(Me)NO}(N-N)]PF6 in high yields. A series of 15 different complexes was prepared and fully characterised spectroscopically and, in some cases, by X-ray diffraction. It was also found that the dithiocarbamato complex undergoes a disproportionation reaction in solution to give the bis(cyclometallated) complex [Pd{κ2C,N-4-MeC6H3N(Me)NO}2] as well as the bis(dithiocarbamato) complex [Pd{κ2S-S2CNEt2}2].  相似文献   

5.
The iminophosphorane Ph2MePNPh (1) reacts with Pd(OAc)2 to give the orthopalladated [Pd(μ-Cl){C6H4(PPh(Me)NPh-κ-C,N)-2}]2 (2) as the racemic mixture, which reacts with Tl(acac) to give [Pd(acac){C6H4(PPh(Me)NPh-κ-C,N)-2}] (3). The X-ray structure of (3) has been determined by diffraction methods. The phosphorus ylide Ph2MePCHC(O)Ph (5) reacts with Pd(OAc)2 to give the dinuclear [Pd(μ-Cl){C6H4(PPh(Me)CHC(O)Ph-κ-C,C)-2}]2 (6) as a mixture of isomers. Complex (6) reacts with Tl(acac), PPh3 or AgClO4/dppe giving the mononuclear derivatives [Pd(acac){C6H4(PPh(Me)CHC(O)Ph-κ-C,C)-2}] (7), [PdCl{C6H4(PPh(Me)CHC(O)Ph-κ-C,C)-2}PPh3] (8) and [Pd{C6H4(PPh(Me)CHC(O)Ph-κ-C,C)-2}(dppe-P,P′)](ClO4) (9), as mixtures of stereoisomers with high diastereomeric excess.  相似文献   

6.
Complexes [Pd{C,N-Ar{C(Me)=NOH}-2}(μ-Cl)](2) (1) with Ar = C(6)H(4), C(6)H(3)NO(2)-5 or C(6)H(OMe)(3)-4,5,6, were obtained from the appropriate oxime, Li(2)[PdCl(4)] and NaOAc. They reacted with neutral monodentate C-, P- or N-donor ligands (L), with [PPN]Cl ([PPN] = Ph(3)P=N=PPh(3)), with Tl(acac) (acacH = acetylacetone), or with neutral bidentate ligands N^N (tetramethylethylenediamine (tmeda), 4,4'-di-tert-butyl-2,2'-bipyridine ((t)Bubpy)) in the presence of AgOTf or AgClO(4) to afford complexes of the types [Pd{C,N-Ar{C(Me)=NOH}-2}Cl(L)] (2), [PPN][Pd{C,N-Ar{C(Me)=NOH}-2}Cl(2)] (3), [Pd{C,N-Ar{C(Me)=NOH}-2}(acac)] (4) or [Pd{C,N-Ar{C(Me)=NOH}-2}(N^N)]X (X = OTf, ClO(4)) (5), respectively. Complexes 1 reacted with bidentate N^N ligands in the presence of a base to afford mononuclear zwitterionic oximato complexes [Pd{C,N-Ar{C(Me)=NO}-2}(N^N)] (6). Dehydrochlorination of complexes 2 by a base yielded dimeric oximato complexes of the type [Pd{μ-C,N,O-Ar{C(Me)[double bond, length as m-dash]NO}-2}L](2) (7). The insertion of XyNC into the Pd-C(aryl) bond of complex 2 produced the mononuclear iminoaryloxime derivative [Pd{C,N-C(=NXy)Ar{C(Me)=NOH}-2}Cl(CNXy)] (8) which, in turn, reacted with [AuCl(SMe(2))] to give [Pd{μ-N,C,N-C(=NXy)Ar{C(Me)=NOH}-2}Cl](2) (9) with loss of XyNC. Some of these complexes are, for any metal, the first containing cyclometalated aryloximato (6, 7) or iminoaryloxime (8, 9) ligands. Various crystal structures of complexes of the types 2, 3, 6, 7, 8 and 9 have been determined.  相似文献   

7.
The first α‐diimine nickel(I) complex having a chloro bridge is reported. The centrosymmetric dinuclear structure of {[ArN?C(Me)C(Me)?NAr]NiCl}2[Ar?2,6?C6H3(i‐Pr)2] features two chelating α‐diimine ligands and two bridged chlorine atoms, so that a distorted tetrahedral N2Cl2 coordination geometry for nickel results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Complexes [Pd(C6H3XH‐2‐R′‐5)Y(N^N)] (X=O, NH; Y=Br, I; R′=H, NO2; N^N=N,N,N′,N′‐tetramethylethylenediamine (tmeda), 2,2′‐bipyridine (bpy), 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine (dtbbpy)) react with RN?C?E (E=NR, S) or RC≡N (R=alkyl, aryl, NR′′2) and TlOTf (OTf=CF3SO3) to give, respectively, 1) products of the insertion of the C?E group into the C? Pd bond, protonation of the N atom, and coordination of X to Pd, [Pd{κ2X,E‐(XC6H3{EC(NHR)}‐2‐R′‐4)}(N^N)]OTf or [Pd(κ2X,N‐{ZC6H3(NH?CR)‐2‐R′‐4})(N^N)]OTf, or products of the coordination of carbodiimides and OH addition, [Pd{κ2C,N‐(C6H4{OC(NR)}NHR‐2)}(bpy)]OTf; or 2) products of the insertion of the C≡N group to Pd and N‐protonation, [Pd(κ2X,N‐{XC6H3(NH?CR)‐2‐R′‐4})(N^N)]OTf.  相似文献   

9.
The square‐like homo‐ and heterometallamacrocycles [{Pd(η3‐2‐Me‐C3H4)( L n )2}2{M(dppp)}2](CF3SO3)6 (dppp=1,3‐bis(diphenylphosphino)propane) and [{Pd(η3‐2‐Me‐C3H4)( L1 )2}2{M(PPh3)2}2](CF3SO3)6 [py=pyridine, M=Pd, Pt, L n =4‐PPh2py ( L1 ), 4‐C6F4PPh2py ( L2 )] containing allyl corners were synthesised by antisymbiotic self‐assembly of the different palladium and platinum metallic corners and the ambidentate N,P ligands. All the synthesised assemblies displayed a complex dynamic behaviour in solution, the rate of which is found to be dependent on the electronic and/or steric nature of the different building blocks. A kinetico‐mechanistic study by NMR line shape analysis of the dynamics of some of these assemblies was undertaken in order to determine the corresponding thermal activation parameters. Both an enhanced thermodynamic stability and slower dynamics were observed for platinum‐pyridine‐containing species when compared with their palladium analogues. Time‐dependent NMR spectroscopy in combination with ESI mass spectrometry was used to study the exchange between the assemblies and their building blocks, as well as that occurring between different metallamacrocycles. Preliminary studies were carried out on the activity of some of the metallamacrocyclic compounds as catalytic precursors in the allylic substitution reaction, and the results compared with that of the monometallic allylic corner [Pd(η3‐2‐Me‐C3H4)( L1 )2]+.  相似文献   

10.
Three isothiocyanate complexes of nickel(II) containing diimine [ArN?C(Me)? C(Me)?NAr]Ni‐ (NCS)2 (1), iminophosphine [Ph2PC6H4CH?NAr]Ni(NCS)2 (2), or diphosphine (dppe)Ni(NCS)2 (3), [Ar = 2, 6‐iPr‐C6H3; dppe = 1, 2‐bis(diphenylphosphine)ethane] were synthesized and examined for ethylene polymerization activated by methylaluminoxane (MAO). Their behavior was compared with those of the corresponding halide analogues [ArN?C(Me)? C(Me)?NAr]NiBr2 (4), [Ph2PC6H4CH?NAr]NiBr2 (5), and (dppe)NiCl2 (6). The diimines showed the highest polymerization activity. Replacement of the halide for the NCS pseudo halide affected the activity and decreased the molecular weight of the polymer formed. The highest molecular weights were obtained with the diimine complexes. Highly branched polyethylenes were obtained with the bulkier complexes 1 and 4. Replacement of the halide for NCS in the diimine complexes also caused an increase in the branching content, whereas the opposite occurs for the iminophosphine complexes. The different activities and behavior of the catalyst systems with halide versus NCS in the polymerization of ethylene and the characteristics of the final products suggest a modification in the active species caused by the non‐chelating ligand. Polymer molecular weight and branching content is dependent on the MAO/Ni molar ratio and on the working temperature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
A new series of palladium complexes ( Pd1–Pd5 ) ligated by symmetrical 2,3‐diiminobutane derivatives, 2,3‐bis[2,6‐bis{bis(4‐FC6H4)2CH}2‐4‐(alkyl)C6H2N]C4H6 (alkyl = Me L1 , Et L2 , i Pr L3 , t Bu L4 ) and 2,3‐bis[2,6‐bis{bis(C6H5)2CH}2‐4‐{(CH3)3C}C6H2N]C4H6 L5 , have been prepared and well characterized, and their catalytic scope toward ethylene polymerization have been investigated. Upon activation with MAO, all palladium complexes ( Pd1–Pd5) exhibited good activities (up to 1.44 × 106 g (PE) mol?1(Pd) h?1) and produced higher molecular weight polyethylene in the range of 105 g mol?1 with precise molecular weight distribution (M w/M n = 1.37–1.77). One of the long‐standing limiting features of the Brookhart type α‐diimine Pd(II) catalysts is that they produce highly branched (ca. 100/1000 C atoms) and totally amorphous polymer. Conversely, herein Pd5 produced polymers having dramatically lower branching number (28/1000) as well as improved melting temperature up to 73.1 °C showing well‐controlled linear architecture, and very similar to polyethylene materials generated by early‐transition‐metal based catalysts. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3214–3222  相似文献   

12.
The coordination chemistry of platinum(II) with a series of thiosemicarbazones {R(H)C2=N3‐N2(H)‐C1(=S)‐N1H2, R = 2‐hydroxyphenyl, H2stsc; pyrrole, H2ptsc; phenyl, Hbtsc} is described. Reactions of trans‐PtCl2(PPh3)2 precursor with H2stsc (or H2ptsc) in 1 : 1 molar ratio in the presence of Et3N base yielded complexes, [Pt(η3‐ O, N3, S‐stsc)(PPh3)] ( 1 ) and [Pt(η3‐ N4, N3, S‐ptsc)(PPh3)] ( 2 ), respectively. Further, trans‐PtCl2(PPh3)2 and Hbtsc in 1 : 2 (M : L) molar ratio yielded a different compound, [Pt(η2‐ N3, S‐btsc)(η1‐S‐btsc)(PPh3)] ( 3 ). Complex 1 involved deprotonation of hydrazinic (‐N2H‐) and hydroxyl (‐OH) groups, and stsc2? is coordinating via O, N3, S donor atoms, while complex 2 involved deprotonation of hydrazinic (‐N2H‐) and ‐N4H groups and ptsc2? is probably coordinating via N4, N3, S donor atoms. Reaction of PdCl2(PPh3)2 with Hbtsc‐Me {C6H5(CH3)C2=N3‐N2(H)‐C1(=S)‐N1H2} yielded a cyclometallated complex [Pd(η3‐C, N3, S‐btsc‐Me)(PPh3)] ( 4 ). These complexes have been characterized with the help of analytical data, spectroscopic techniques {IR, NMR (1H, 31P), U.V} and single crystal X‐ray crystallography ( 1 , 3 and 4 ). The effects of substituents at C2 carbon of thiosemicarbazones on their dentacy and cyclometallation are emphasized.  相似文献   

13.
The imidazolium chloride [C3H3N(C3H6NMe2)N{C(Me)(=NDipp)}]Cl ( 1 ; Dipp=2,6‐diisopropyl phenyl), a potential precursor to a tritopic NimineCNHCNamine pincer‐type ligand, reacted with [Ni(cod)2] to give the NiI‐NiI complex 2 , which contains a rare cod‐derived η3‐allyl‐type bridging ligand. The implied intermediate formation of a nickel hydride through oxidative addition of the imidazolium C−H bond did not occur with the symmetrical imidazolium chloride [C3H3N2{C(Me)(=NDipp)}2]Cl ( 3 ). Instead, a Ni−C(sp3) bond was formed, leading to the neutral NimineCHNimine pincer‐type complex Ni[C3H3N2{C(Me)(=NDipp)}2]Cl ( 4 ). Theoretical studies showed that this highly unusual feature in nickel NHC chemistry is due to steric constraints induced by the N substituents, which prevent Ni−H bond formation. Remarkably, ethylene inserted into the C(sp3)−H bond of 4 without nickel hydride formation, thus suggesting new pathways for the alkylation of non‐activated C−H bonds.  相似文献   

14.
The phosphorus ylides Ph3PCHC(O)C6H4R (R = 4-Me 1a, 4-Br 1b) react with PdCl2 in equimolar ratios to give the C,C-orthopalladated [Pd{CHP(C6H4)Ph2CO-C6H4-R)}(μ-Cl)]2 (R = 4-Me 2a, 4-Br 2b) which react with NaClO4/dppe, NaClO4/dppm, py and PPh3 to give the mononuclear derivatives [Pd{CH{P(C6H4)Ph2}COC6H4-R}(dppe-P,P′)[(ClO4) (R = 4-Me 3a, 4-Br 3b), [Pd{CH{P(C6H4)Ph2}COC6H4-R}(dppm-P,P′)[(ClO4 ( (R = 4-Me 4a, 4-Br 4b), [Pd{CH{P(C6H4)Ph2}COC6H4-R}Cl(L)] (L = py, R = 4-Me 5a, 4-Br 5b, L = PPh3, R = 4-Me 6a, 4-Br 6b). The C, C-metalated chelate are demonstrated by an X-ray diffraction study of 3a and 4a. Characterization of the obtained compounds was also performed by elemental analysis, IR, 1H, 31P, and 13C NMR.  相似文献   

15.
Reaction of the thiosemicarbazone ligands C4H4NC(H)=NN(H)C(S)NHR (R = Me, a ; Et, b ) with Li2[PdCl4] gave the dinuclear complexes [Pd{C4H4NC(H)=NNC(S)NHR}(μ‐Cl)]2 (R = Me, 1a ; Et, 1b ) with a central Pd2Cl2 core and with deprotonation of the thiosemicarbazones at the hydrazinic nitrogen atom. Treatment of 1a and 1b with triphenylphosphine gave the mononuclear compounds [Pd{C4H4C(H)=NNC(S)NHR}(Cl)(PPh3)] (R = Me, 2a ; Et, 2b ), whereas reaction of 1a and 1b with tertiary diphosphines gave mono‐ and dinuclear compounds, as appropriate, with the corresponding diphosphine acting as a monodentate ( 6b ), chelating ( 3a ) and bridging ligand ( 4a, 5a , 4b, 5b ). Treatment of 1a and 1b with (Ph2PCH2CH2PPh2)W(CO)5 gave the new heterobimetallic complexes 7a and 7b . The crystal structures of complexes 3a and 4a are described.  相似文献   

16.
A series of ruthenium alkenylacetylide complexes trans-[Ru{C≡CC(=CH2)R}Cl(dppe)2] (R=Ph ( 1 a ), cC4H3S ( 1 b ), 4-MeS-C6H4 ( 1 c ), 3,3-dimethyl-2,3-dihydrobenzo[b]thiophene (DMBT) ( 1 d )) or trans-[Ru{C≡C-cC6H9}Cl(dppe)2] ( 1 e ) were allowed to react with the corresponding propargylic alcohol HC≡CC(Me)R(OH) (R=Ph ( A ), cC4H3S ( B ), 4-MeS-C6H4 ( C ), DMBT ( D ) or HC≡C-cC6H10(OH) ( E ) in the presence of TlBF4 and DBU to presumably give alkenylacetylide/allenylidene intermediates trans-[Ru{C≡CC(=CH2)R}{C=C=C(Me)}(dppe)2]PF6 ([ 2 ]PF6). These complexes were not isolated but deprotonated to give the isolable bis(alkenylacetylide) complexes trans-[Ru{C≡CC(=CH2)R}2(dppe)2] (R=Ph ( 3 a ), cC4H3S ( 3 b ), 4-MeS-C6H4 ( 3 c ), DMBT ( 3 d )) and trans-[Ru{C≡C-cC6H9}2(dppe)2] ( 3 e ). Analogous reactions of trans-[Ru(CH3)2(dmpe)2], featuring the more electron-donating 1,2-bis(dimethylphosphino)ethane (dmpe) ancillary ligands, with the propargylic alcohols A or C and NH4PF6 in methanol allowed isolation of the intermediate mixed alkenylacetylide/allenylidene complexes trans-[Ru{C≡CC(=CH2)R}{C=C=C(Me)}(dmpe)2]PF6 (R=Ph ([ 4 a ]PF6), 4-MeS-C6H4 ([ 4 c ]PF6). Deprotonation of [ 4 a ]PF6 or [ 4 c ]PF6 gave the symmetric bis(alkenylacetylide) complexes trans-[Ru{C≡CC(=CH2)R}2(dmpe)2] (R=Ph ( 5 a ), 4-MeS-C6H4 ( 5 c )), the first of their kind containing the dmpe ancillary ligand sphere. Attempts to isolate bis(allenylidene) complexes [Ru{C=C=C(Me)R}2(PP)2]2+ (PP=dppe, dmpe) from treatment of the bis(alkenylacetylide) species 3 or 5 with HBF4 ⋅ Et2O were ultimately unsuccessful.  相似文献   

17.
Template combination of copper acetate (Cu(AcO)2?H2O) with sodium dicyanamide (NaN(C≡N)2, 2 equiv) or cyanoguanidine (N≡CNHC(=NH)NH2, 2 equiv) and an alcohol ROH (used also as solvent) leads to the neutral copper(II)–(2,4‐alkoxy‐1,3,5‐triazapentadienato) complexes [Cu{NH?C(OR)NC(OR)?NH}2] (R=Me ( 1 ), Et ( 2 ), nPr ( 3 ), iPr ( 4 ), CH2CH2OCH3 ( 5 )) or cationic copper(II)–(2‐alkoxy‐4‐amino‐1,3,5‐triazapentadiene) complexes [Cu{NH?C(OR)NHC(NH2)?NH}2](AcO)2 (R=Me ( 6 ), Et ( 7 ), nPr ( 8 ), nBu ( 9 ), CH2CH2OCH3 ( 10 )), respectively. Several intermediates of this reaction were isolated and a pathway was proposed. The deprotonation of 6 – 10 with NaOH allows their transformation to the corresponding neutral triazapentadienates [Cu{NH?C(OR)NC(NH2)?NH}2] 11 – 15 . Reaction of 11 , 12 or 15 with acetyl acetone (MeC(?O)CH2C(?O)Me) leads to liberation of the corresponding pyrimidines NC(Me)CHC(Me)NC NHC(?NH)OR, whereas the same treatment of the cationic complexes 6 , 7 or 10 allows the corresponding metal‐free triazapentadiene salts {NH2C(OR)?NC(NH2)?NH2}(OAc) to be isolated. The alkoxy‐1,3,5‐triazapentadiene/ato copper(II) complexes have been applied as efficient catalysts for the TEMPO radical‐mediated mild aerobic oxidation of alcohols to the corresponding aldehydes (molar yields of aldehydes of up to 100 % with >99 % selectivity) and for the solvent‐free microwave‐assisted synthesis of ketones from secondary alcohols with tert‐butylhydroperoxide as oxidant (yields of up to 97 %, turnover numbers of up to 485 and turnover frequencies of up to 1170 h?1).  相似文献   

18.
The title compound, [Pd2(C4H13N3)2(C14H16N2)](NO3)4, comprises discrete tetracationic dumbbell‐type dinuclear complex molecules and noncoordinating nitrate anions. Two Pd(dien)2+ moieties (dien is diethylenetriamine) are joined by the rigid linear exo‐bidentate bridging 2,2′,6,6′‐tetramethyl‐4,4′‐bipyridine ligand to form the dinuclear complex, which lies across a centre of inversion in the space group P21/n, so that the rings in the 2,2′,6,6′‐tetramethyl‐4,4′‐bipyridine bridging ligand are parallel. In the crystal, the primary and secondary amino groups of the dien ligand act as hydrogen‐bond donors towards the nitrate anions to form a three‐dimensional hydrogen‐bond network.  相似文献   

19.
The synthesis and characterization of two new dinuclear nickel(II) complexes, namely bis{μ‐3‐[2‐(dimethylamino)ethylimino]butan‐2‐one oximato}dinickel(II) bis(perchlorate) acetonitrile solvate, [Ni2(C8H16N3O)2](ClO4)2·CH3CN, (I), and bis{μ‐3‐[2‐(dimethylamino)ethylimino]‐3‐phenylpropan‐2‐one oximato}dinickel(II) bis(perchlorate), [Ni2(C13H18N3O)2](ClO4)2, (II), are reported. Single‐crystal X‐ray analyses of the complexes reveal that the nickel(II) ions are in square‐planar N3O environments and form six‐membered (NiNO)2 metallacycles. The cation in (II) possesses crystallographically imposed inversion symmetry.  相似文献   

20.
The title compound, catena‐poly[[[diaqua(methanol‐κO)copper(II)]‐μ‐N‐(4‐methylpyrimidin‐2‐yl‐κN1)pyrazin‐2‐amine‐κ2N1:N4] [[aqua(aqua/methanol‐κO)(perchlorato‐κO)copper(II)]‐μ‐N‐(4‐methylpyrimidin‐2‐yl‐κN1)pyrazin‐2‐amine‐κ2N1:N4] tris(perchlorate) methanol monosolvate 1.419‐hydrate], {[Cu(C9H9N5)(CH3OH)(H2O)2][Cu(C9H9N5)(ClO4)(CH3OH)0.581(H2O)1.419](ClO4)3·CH3OH·1.419H2O}n, is a one‐dimensional straight‐chain polymer of N‐(4‐methylpyrimidin‐2‐yl)pyrazin‐2‐amine (L) with Cu(ClO4)2. The complex consists of two crystallographically independent one‐dimensional chains in which the CuII atoms exhibit two different octahedral coordination geometries. The L ligand coordinates to two CuII centres in a tridentate manner, with the pyrazine ring acting as a bridge linking the CuII coordination units and building an infinite one‐dimensional chain. Extensive hydrogen bonding among perchlorate anions, water molecules and L ligands results in three‐dimensional networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号