首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Arabian Journal of Chemistry》2020,13(12):9005-9018
A simple, efficient and economically viable method for the Heck reaction has been accomplished in the absence of phosphine ligand. The Heck reaction was performed using nanostructured Ni-Co/ZnO material as a heterogeneous catalyst in a DMF/H2O solvent system and in the presence of K2CO3, at 120 °C. The Ni-Co/ZnO nanostructures were prepared by the facile reduction-impregnation method. The structural and morphological properties of Ni-Co/ZnO nanostructure were investigated using various physico-chemical characterization techniques. Structural studies displayed the formation of hexagonal (wurtzite) ZnO. Electron microscopy imaging showed the presence of agglomerated clusters of Ni-Co nanoparticles over the surfaces of elliptical, flower bud-like and irregularly shaped sub-micron sized particle bundles of ZnO. The elemental composition analysis (EDX) confirmed the loading of Ni and Co nanoparticles over the nanocrystalline ZnO. The surface chemical state analysis of Ni-Co/ZnO material validated that Ni nanostructure exists in Ni2+ and Ni3+ species, whereas, Co nanostructure exists in Co2+ and Co3+ species. UV–Vis diffuse reflectance spectroscopy displays red shift in the light absorption edge of Ni-Co/ZnO catalyst compared to pure ZnO. The as-prepared Ni-Co bimetallic supported ZnO nanostructure showed better catalytic activity and stability for the Heck reactions under phosphine ligand-free conditions. Ni-Co/ZnO catalyzed Heck reactions afforded the corresponding cross-coupled products with moderate to good yields (up to 92%). Ni-Co/ZnO catalyst could be reused for five successive runs without significant loss of catalytic activity.  相似文献   

2.
In this paper rod-like cobalt phosphide (Co2P) nanostructures were successfully synthesized at a large scale via an improved water–ethanol mixed-solvothermal route. White phosphorus and cobalt dichloride were used as starting reactants, hexamethylenetetramine as the pH adjustor, sodium dodecyl benzene sulfonate as the surfactant. The reaction was carried out at 170 °C for 800 min. It was found that the morphology and crystallinity of Co2P nanostructures could be tuned by the amount of hexamethylenetetramine. Experiments showed that the as-prepared Co2P nanostructures owned good catalytic activity in the reduction of aromatic nitro compounds. Under the presence of 40 mg L?1 Co2P nanostructures, some aromatic nitro compounds, including 4-nitrophenol, 4-nitroaniline, 2,4-dinitrophenol, and 3,5-dinitrosalicylic acid, were fully reduced by NaBH4 within 3–5 min. Also, the catalytic activities of Co2P nanostructures could be affected by the morphologies of the final products. Furthermore, the as-obtained Co2P nanostructures also exhibited good adsorption capacities for Pb2+ and Cu2+ ions in water resources, indicating that the as-prepared product had potential application in environmental treatments.  相似文献   

3.
The porous hierarchical spherical Co3O4 assembled by nanosheets have been successfully fabricated. The porosity and the particle size of the product can be controlled by simply altering calcination temperature. SEM, TEM and SAED were performed to confirm that mesoporous Co3O4 nanostructures are built-up by numerous nanoparticles with random attachment. The BET specific surface area and pore size of the product calcined at 280 °C are 72.5 m2 g−1 and 4.6 nm, respectively. Our experiments further demonstrated that electrochemical performances of the synthesized products working as an anode material of lithium-ion battery are strongly dependent on the porosity.  相似文献   

4.
In this study, an effect of different concentrations of urea on the morphology of cobalt oxide (Co3O4) nanostructures was investigated. The Co3O4 nanostructures are fabricated on gold coated glass substrate by the hydrothermal method. The morphological and structural characterization was performed by scanning electron microscopy, and X‐ray diffraction techniques. The Co3O4 nanostructures exhibit morphology of flowers‐like and have comprised on nanowires due to the increasing amount of urea. The nanostructures were highly dense on the substrate and possess a good crystalline quality. The Co3O4 nanostructures were successfully used for the development of a sensitive glucose biosensor. The presented glucose biosensor detected a wide range of glucose concentrations from 1×10?6 M to 1×10?2 M with sensitivity of a ?56.85 mV/decade and indicated a fast response time of less than 10 s. This performance could be attributed to the heterogeneous catalysis effect at glucose oxidase enzyme, nanoflowers, and nanowires interfaces, which have enhanced the electron transfer process on the electrode surface. Moreover, the reproducibility, repeatability, stability and selectivity were also investigated. All the obtained results indicate the potential use of the developed glucose sensor for monitoring of glucose concentrations at drugs, human serum and food industry related samples.  相似文献   

5.
Co3O4 nanorods and nanobelts can be synthesized controllably by a template-free hydrothermal method. Enhanced lithium-ion battery performances are obtained from Co3O4 nanorods and nanobelts. After 50 cycles, the reversible capacity is up to 1124 and 1260 mAh g−1 at C/20 rate (20 h per half cycle), respectively, and the cyclability are excellent. Lithium-ion battery performance of nanobelts is much higher than that of nanorods. Such a behavior is attributed to more efficient Li insertion, less volume change and no agglomeration of nanobelts. The present results open a way for fabrication of porous 1D nanostructures and imply that porous 1D nanostructures are good candidates for high performance lithium-ion battery anodes.  相似文献   

6.
Reduced graphene oxide sheets decorated with cobalt oxide nanoparticles (Co3O4/rGO) were produced using a hydrothermal method without surfactants. Both the reduction of GO and the formation of Co3O4 nanoparticles occurred simultaneously under this condition. At the same current density of 0.5 A g−1, the Co3O4/rGO nanocomposites exhibited much a higher specific capacitance (545 F g−1) than that of bare Co3O4 (100 F g−1). On the other hand, for the detection of H2O2, the peak current of Co3O4/rGO was 4 times higher than that of Co3O4. Moreover, the resulting composite displayed a low detection limit of 0.62 μM and a high sensitivity of 28,500 μA mM−1cm−2 for the H2O2 sensor. These results suggest that the Co3O4/rGO nanocomposite is a promising material for both supercapacitor and non-enzymatic H2O2 sensor applications.  相似文献   

7.
Highly sensitive, selective, reliable and inexpensive cholesterol biosensors are highly demanded for the routine monitoring of cholesterol molecules in order to prevent heart failure incidents. In this study, Co3O4 nanostructures are synthesized using polyvinyl pyrrolidone surfactant as growth template by a low temperature aqueous chemical growth method. The morphology of nanostructures was investigated by scanning electron microscopy and X‐ray diffraction techniques. The nanostructures exhibit interconnected nanowires like morphology with interconnected network of nanowires. The nanostructures of Co3O4 are polycrystalline. The cholesterol oxidase was physically adsorbed on the interconnected nanowires of Co3O4 for the chemical sensing of cholesterol molecules. The sensor device detected a wide range of cholesterol from 1×10?7 M to 1×10?3 M concentrations with sensitivity of ?94.031 mV/decade. A detection limit of 0.035×10?7 M cholesterol concentration was observed and a fast response time of 10 s was also noticed. The fabricated device is highly stable, selective, sensitive, reproducible and repeatable. All the collected information about presented cholesterol biosensor indicates its potential application for the monitoring of cholesterol concentrations from human blood serum and real‐life samples.  相似文献   

8.
Developing cost-effective and more efficient nanocatalysts for the treatment of organic pollutants from process industry is always challenging for the researchers working in the field of chemistry, chemical, energy and environment engineering. In this work, a cost-effective and more efficient nanocatalysts, i.e., Nickel Cobaltite nanocomposites and its Lanthanum (La) doped derivatives with controlled surface morphology has been synthesized at 393.15 K through single step sol–gel method. The surface morphology, chemical composition, and crystal structure of the synthesized nanocomposites were analysed by scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), and X-rays diffraction (XRD), respectively. The rough surface and well-crystallized metallic nanocomposites confirm the successful synthesis of nanocatalysts. The molar ratio of Lanthanum to Cobalt (Lax:Coy) showed a significant influence on the surface morphology and catalytic activity (Kapp = 0.15–0.47 min−1) of the products. Synthesized nanocomposites showed high catalytic activity for the reduction of methylene blue under solar irradiation. Photocatalytic results for the reduction of methylene blue show that the catalytic activity of synthesized nanocatalysts increases with the increase in the doping concentration of Lanthanum.  相似文献   

9.
《化学:亚洲杂志》2018,13(18):2700-2707
The relationship between controllable morphology and electrocatalytic activity of Co3O4 and CoSe2 for the oxygen evolution reaction (OER) was explored in alkaline medium. Based on the time‐dependent growth process of cobalt precursors, 1D Co3O4 nanorods and 2D Co3O4 nanosheets were successfully synthesized through a facile hydrothermal process at 180 °C under different reaction times, followed by calcination at 300 °C for 2 h. Subsequently, 1D and 2D CoSe2 nanostructures were derived by selenization of Co3O4, which achieved the controllable synthesis of CoSe2 without templating agents. By comparing the electrocatalytic behavior of these cobalt‐based catalysts in 1 m KOH electrolyte toward the OER, both 2D Co3O4 and 2D CoSe2 nanocrystals have lower overpotentials and better electrocatalytic stability than that of 1D nanostructures. The 2D CoSe2 nanosheets require overpotentials of 372 mV to reach a current density of 50 mA cm−2 with a small Tafel slope of 74 mV dec−1. A systematic contrast of the electrocatalytic performances for the OER increase in the order: 1D Co3O4<2D Co3O4<1D CoSe2<2D CoSe2. This work provides fundamental insights into the morphology–performance relationships of both Co3O4 and CoSe2, which were synthesized through the same approach, providing a solid guide for designing OER catalysts.  相似文献   

10.
Pure and palladium‐loaded Co3O4 hollow hierarchical nanostructures consisting of nanosheets have been prepared by solvothermal self‐assembly. The nanostructures exhibited an ultrahigh response and selectivity towards p‐xylene and toluene. The responses (resistance ratio) of the palladium‐loaded Co3O4 hollow hierarchical nanostructures to 5 ppm of p‐xylene and toluene were as high as 361 and 305, respectively, whereas the selectivity values (response ratios) towards p‐xylene and toluene over interference from ethanol were 18.1 and 16.1, respectively. We attributed the giant response and unprecedented high selectivity towards methylbenzenes to the abundant adsorption of oxygen by Co3O4, the high chemiresistive variation in the Co3O4 nanosheets (thickness≈11 nm), and the catalytic promotion of the specific gas‐sensing reaction. The morphological design of the p‐type Co3O4 nanostructures and loading of the palladium catalyst have paved a new way to monitoring the most representative indoor air pollutants in a highly selective, sensitive, and reliable manner.  相似文献   

11.
A Co3O4 villiform nanostructure was prepared by the aid of the cobalt oxalate precursor and characterized with x-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and UV-vis spectrum. It is found that the villiform structure obtained consists of Co3O4 nanorods with diameters of 50–80 nm. Moreover, the UV-vis absorptions of the villiform Co3O4 show the apparent blue shifts by comparison with the bulk Co3O4, indicating a quantum size effect similar to the free Co3O4 nanoparticles.  相似文献   

12.
This work reports the synthesis of various carbon (Vulcan XC-72 R) supported metal oxide nanostructures, such as Mn2O3, Co3O4 and Mn2O3−Co3O4 as heterogeneous Fenton-like catalysts for the degradation of organic dye pollutants, namely Rhodamine B (RB) and Congo Red (CR) in wastewater. The activity results showed that the bimetallic Mn2O3−Co3O4/C catalyst exhibits much higher activity than the monometallic Mn2O3/C and Co3O4/C catalysts for the degradation of both RB and CR pollutants, due to the synergistic properties induced by the Mn−Co and/or Mn (Co)−support interactions. The degradation efficiency of RB and CR was considerably increased with an increase of reaction temperature from 25 to 45°C. Importantly, the bimetallic Mn2O3−Co3O4/C catalyst could maintain its catalytic activity up to five successive cycles, revealing its catalytic durability for wastewater purification. The structure–activity correlations demonstrated a probable mechanism for the degradation of organic dye pollutants in wastewater, involving •OH radical as well as Mn2+/Mn3+ or Co2+/Co3+ redox couple of the Mn2O3−Co3O4/C catalyst.  相似文献   

13.
Reduction of the transition metal complexes in aqueous solution has been investigated systematically by ascorbic acid as the reducing agent without the assistance of any surfactant. Nanoparticles of α-Mn2O3, Ag and Cu were synthesized directly through aqueous phase reduction at room temperature. Nanoscale metal oxides such as Co3O4, α-Fe2O3 and MoO2 were obtained through ascorbic acid reduction in alkali medium at 40°C. All the products were characterized on their structure and micro-morphology by the X-ray diffraction (XRD) and atomic force microscopy (AFM). The particle size of metal and metal oxides was about 10–50 nm. The reaction details and features were described and discussed.  相似文献   

14.
Co3O4 was prepared by rheological phase reaction, and the effect of pyrolyzing temperature on the electrochemical performance of Co3O4 was investigated. XRD shows that higher temperature treatment results in sharper diffraction peaks, indicating an increase of particle size of Co3O4. The result of TEM shows that the particle sizes of Co3O4 are about 200 nm. The optimum pyrolyzing temperature is confirmed to be 600°C, and Co3O4 prepared at this temperature exhibits 390.8 F g?1 of specific capacitance in 6 M KOH electrolyte at the scan rate of 5 mV s?1. Co3O4 prepared at the temperature of 600°C shows an excellent cyclability.  相似文献   

15.
This study combined electrochemical synthesis with traditional ferrite method to remove Co2+ from simulated liquid radioactive waste (LRW). The experiment investigated the effects of various reaction conditions including current density, reaction time for electrosynthesis, reaction temperature, initial pH value and boric acid concentration as well as the type of power supply by measuring the concentration of Co2+ in the effluent, explored the reaction mechanism by measuring particles using XRD. The results showed that it was feasible to remove Co2+ from simulated LRW by electrochemical synthesis of ferrite. The best removal efficiency of 99.99% (the concentration of Co2+ in the effluent was 0.447 μg/L) was achieved under the optimal reaction conditions, the sediment was mainly composed of the mixture of CoFe2O4 and Fe3O4.  相似文献   

16.
To avoid an enormous energy crisis in the not-too-distant future, it be emergent to establish high-performance energy storage devices such as supercapacitors. For this purpose, a three-dimensional (3D) heterostructure of Co3O4 and Co3S4 on nickel foam (NF) that is covered by reduced graphene oxide (rGO) has been prepared by following a facile multistep method. At first, rGO nanosheets are deposited on NF under mild hydrothermal conditions to increase the surface area. Subsequently, nanowalls of cobalt oxide are electro-deposited on rGO/Ni foam by applying cyclic-voltammetry (CV) under optimized conditions. Finally, for the synthesis of Co3O4@Co3S4 nanocomposite, the nanostructure of Co3S4 was fabricated from Co3O4 nanowalls on rGO/NF by following an ordinary hydrothermal process through the sulfurization for the electrochemical application. The samples are characterized by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The obtained sample delivers a high capacitance of 13.34 F cm−2 (5651.24 F g−1) at a current density of 6 mA cm−2 compared to the Co3O4/rGO/NF electrode with a capacitance of 3.06 F cm−2 (1230.77 F g−1) at the same current density. The proposed electrode illustrates the superior electrochemical performance such as excellent specific energy density of 85.68 W h Kg−1, specific power density of 6048.03 W kg−1 and a superior cycling performance (86% after 1000 charge/discharge cycles at a scan rate of 5 mV s−1). Finally, by using Co3O4 @Co3S4/rGO/NF and the activated carbon-based electrode as positive and negative electrodes, respectively, an asymmetric supercapacitor (ASC) device was assembled. The fabricated ASC provides an appropriate specific capacitance of 79.15 mF cm−2 at the applied current density of 1 mA cm−2, and delivered an energy density of 0.143 Wh kg−1 at the power density of 5.42 W kg−1.  相似文献   

17.
A novel approach is developed to synthesize Co3O4 nanoparticles utilizing sawdust as a bio-template. Sawdust was first infiltrated with cobalt dichloride aqueous solution, and then, in situ precipitation reaction took place when different precipitators (NaOH or H2C2O4) were added. Finally, the precursors, Co(OH)2 and CoC2O4, were calcined to produce the final Co3O4 nanoparticles and the template was removed simultaneously. The structure and morphology of the obtained products were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The observations revealed the formation of cubic phase Co3O4 with the average diameter of about 40 and 60 nm, respectively. Their electrochemical properties were investigated by cyclic voltammetry and galvanostatic charge–discharge tests. The highest specific capacitance of 289.7 F g−1 for the obtained Co3O4 electrode was obtained even at a discharge current of 20 mA after the 100th cycle and it increased by about 4% after the 1,000th cycle, demonstrating good electrochemical stability of such electrode materials.  相似文献   

18.
In this paper, perovskite oxide SmCoO3 was prepared by the solid-state reaction method using Co2O3 and Sm2O3 as raw materials. The structure and properties of the samples were investigated by XRD, Raman spectral techniques, and DC measurements and so on. The results of XRD and Raman spectra showed that the mixtures of Co2O3 and Sm2O3 can react to produce a single phase perovskite oxide SmCoO3 around 1353 K. The single-phase SmCoO3 changes from an insulator to a semi-conductor and transition occurs around 470 K. The thermal expansion coefficient (2.17 × 10−5 K−1) of the single-phase SmCoO3 is approximately equal to that of doped LaGaO3, but much bigger than that of SDC(Ce0.85Sm0.15O2) above 873 K.  相似文献   

19.
Co3O4, which is of mixed valences Co2+ and Co3+, has been extensively investigated as an efficient electrocatalyst for the oxygen evolution reaction (OER). The proper control of Co2+/Co3+ ratio in Co3O4 could lead to modifications on its electronic and thus catalytic properties. Herein, we designed an efficient Co3O4‐based OER electrocatalyst by a plasma‐engraving strategy, which not only produced higher surface area, but also generated oxygen vacancies on Co3O4 surface with more Co2+ formed. The increased surface area ensures the Co3O4 has more sites for OER, and generated oxygen vacancies on Co3O4 surface improve the electronic conductivity and create more active defects for OER. Compared to pristine Co3O4, the engraved Co3O4 exhibits a much higher current density and a lower onset potential. The specific activity of the plasma‐engraved Co3O4 nanosheets (0.055 mA cm?2BET at 1.6 V) is 10 times higher than that of pristine Co3O4, which is contributed by the surface oxygen vacancies.  相似文献   

20.
Controlled synthesis of transition‐metal hydroxides and oxides with earth‐abundant elements have attracted significant interest because of their wide applications, for example as battery electrode materials or electrocatalysts for fuel generation. Here, we report the tuning of the structure of transition‐metal hydroxides and oxides by controlling chemical reactions using an unfocused laser to irradiate the precursor solution. A Nd:YAG laser with wavelengths of 532 nm or 1064 nm was used. The Ni2+, Mn2+, and Co2+ ion‐containing aqueous solution undergoes photo‐induced reactions and produces hollow metal‐oxide nanospheres (Ni0.18Mn0.45Co0.37Ox) or core–shell metal hydroxide nanoflowers ([Ni0.15Mn0.15Co0.7(OH)2](NO3)0.2?H2O), depending on the laser wavelengths. We propose two reaction pathways, either by photo‐induced redox reaction or hydrolysis reaction, which are responsible for the formation of distinct nanostructures. The study of photon‐induced materials growth shines light on the rational design of complex nanostructures with advanced functionalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号