首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Molybdenum disulfide (MoS2) quantum dots (QDs) are known for their excitation‐wavelength‐dependent photoluminescent (PL) properties. However, the mechanism of this phenomenon is still unclear. Here, small size MoS2 QDs with a narrow size distribution are synthesized. Based on the decay study and PL dynamics, a reasonable radiation model is presented to understand the special PL properties, i.e., the carrier recombination in the localized surface defect states generated the PL. Accordingly, this optical property is used to fabricate multicolor light‐emitting devices with the same MoS2 QDs. The emission color covers the full visible spectrum from blue to red, only by adjusting the thickness of the down‐conversion QD layers.  相似文献   

2.
This paper presents briefly the history of emission study in Si quantum dots (QDs) in the last two decades. Stable light emission of Si QDs and NCs was observed in the spectral ranges: blue, green, orange, red and infrared. These PL bands were attributed to the exciton recombination in Si QDs, to the carrier recombination through defects inside of Si NCs or via oxide related defects at the Si/SiOx interface. The analysis of recombination transitions and the different ways of the emission stimulation in Si QD structures, related to the element variation for the passivation of surface dangling bonds, as well as the plasmon induced emission and rare earth impurity activation, have been presented.The different applications of Si QD structures in quantum electronics, such as: Si QD light emitting diodes, Si QD single union and tandem solar cells, Si QD memory structures, Si QD based one electron devices and double QD structures for spintronics, have been discussed as well. Note the significant worldwide interest directed toward the silicon-based light emission for integrated optoelectronics is related to the complementary metal-oxide semiconductor compatibility and the possibility to be monolithically integrated with very large scale integrated (VLSI) circuits. The different features of poly-, micro- and nanocrystalline silicon for solar cells, that is a mixture of both amorphous and crystalline phases, such as the silicon NCs or QDs embedded in a α-Si:H matrix, as well as the thin film 2-cell or 3-cell tandem solar cells based on Si QD structures have been discussed as well. Silicon NC based structures for non-volatile memory purposes, the recent studies of Si QD base single electron devices and the single electron occupation of QDs as an important component to the measurement and manipulation of spins in quantum information processing have been analyzed as well.  相似文献   

3.
The dispersion of silicon quantum dots (Si QDs) in water has not been established as well as that in organic solvents. It is now demonstrated that the excellent dispersion of Si QDs in water with photoluminescence (PL) quantum yields (QYs) comparable to those for hydrophobic Si QDs can be realized by combining the processes of hydrosilylation and self‐assembly. Hydrogen‐passivated Si QDs are initially hydrosilylated with 1‐dodecence. The toluene solution of the resulting dodecyl‐passivated Si QDs is mixed with the water solution of the amphiphilic polymer of Pluronic F127 to form an emulsion. Dodecyl‐passivated Si QDs are encapsulated in the micelles self‐assembled from F127 in the emulsion. The size of the Si‐QD‐containing micelles may be tuned in the range from 10 to 100 nm. Although self‐assembly in the emulsion causes the PL QY of Si QDs to decrease, after a few days of storage in ambient conditions, Si QDs encapsulated in the water‐dispersible micelles exhibit recovered PL QYs of ≈24% at the PL wavelength of ≈680 nm. The intensity of the PL from Si QDs encapsulated in the water‐dispersible micelles is >90% of the original value after 60 min ultraviolet illumination, indicating excellent photostability.  相似文献   

4.
The paper presents the comparison of emission efficiencies for crystalline Si quantum dots (QDs) and amorphous Si nanoclusters (QDs) embedded in hydrogenated amorphous (a-Si:H) films grown by the hot wire-CVD method (HW-CVD) at the variation of technological parameters. The correlations between the intensities of different PL bands and the volumes of Si nanocrystals (nc-Si:H) and/or an amorphous (a-Si:H) phase have been revealed using X-ray diffraction (XRD) and photoluminescence (PL) methods. These correlations permit to discuss the PL mechanisms in a-Si:H films with embedded nc-Si QDs. The QD parameters of nc-Si:H and a-Si:H QDs have been estimated from PL results and have been compared (for nc-Si QDs) with the parameters obtained by the XRD method. Using PL and XRD results the relations between quantum emission efficiencies for crystalline (ηcr) and amorphous (ηam) QDs have been estimated and discussed for all studied QD samples. It is revealed that a-Si:H films prepared by HW-CVD with the variation of wire temperatures are characterized by better passivation of nonradiative recombination centers in comparison with the films prepared at the variation of substrate temperatures or oxygen flows.  相似文献   

5.
采用稳态速率方程模型,对双模自组织量子点光致发光的温度依赖性进行了研究,模拟获得了不同温度下双模自组织量子点的光致发光光谱,并进一步研究了两组量子点分布的光致发光强度比的温度依赖性。研究表明:在低温下(<75K),两组量子点分布的发光强度比基本保持不变;随着温度的升高(75K相似文献   

6.
Optimizing the light‐emitting efficiency of silicon quantum dots (Si QDs) has been recently intensified by the demand of the practical use of Si QDs in a variety of fields such as optoelectronics, photovoltaics, and bioimaging. It is imperative that an understanding of the optimum light‐emitting efficiency of Si QDs should be obtained to guide the design of the synthesis and processing of Si QDs. Here an investigation is presented on the characteristics of the photoluminescence (PL) from hydrosilylated Si QDs in a rather broad size region (≈2–10 nm), which enables an effective mass approximation model to be developed, which can very well describe the dependence of the PL energy on the QD size for Si QDs in the whole quantum‐confinement regime, and demonstrates that an optimum PL quantum yield (QY) appears at a specific QD size for Si QDs. The optimum PL QY results from the interplay between quantum‐confinement effect and surface effect. The current work has important implications for the surface engineering of Si QDs. To optimize the light‐emission efficiency of Si QDs, the surface of Si QDs must be engineered to minimize the formation of defects such as dangling bonds at the QD surface and build an energy barrier that can effectively prevent carriers in Si QDs from tunneling out.  相似文献   

7.
We have described Stranski–Krastanow growth of multilayer In(Ga)As/GaAs QDs on Ge substrate by MBE. The growth technique includes deposition of a thin germanium buffer layer followed by migration-enhanced epitaxy (MEE) grown GaAs layer at 350°C. The MEE layer was overgrown by a thin low-temperature (475°C) grown GaAs layer with a subsequent deposition of a thick GaAs layer grown at 590°C. The sample was characterized by AFM, cross-sectional TEM and temperature-dependent PL measurements. The AFM shows dense formation of QDs with no undulation in the wetting layer. The XTEM image confirms that the sample is free from structural defects. The 8 K PL emission exhibits a 1051 nm peak, which is similar to the control sample consisting of In(Ga)As/GaAs QDs grown on GaAs substrate, but the observed emission intensity is lower. The similar slopes of Arrhenius plot of the integrated PL intensity for the as-grown QD sample grown on Ge substrate as well as for a reference QD sample grown on GaAs substrate are found to be identical, indicating a similar carrier emission process for both the samples. This in turn indicates coherent formation of QDs on Ge substrate. We presume due to the accumulated strain associated with the self-assembled growth of nanostructures on Ge that nonradiative recombination centers are introduced in the GaAs barrier in between the QD layers, which in turn degrades the overall optical quality of the sample.  相似文献   

8.
All‐optical modulation based on silicon quantum dot doped SiOx:Si‐QD waveguide is demonstrated. By shrinking the Si‐QD size from 4.3 nm to 1.7 nm in SiOx matrix (SiOx:Si‐QD) waveguide, the free‐carrier absorption (FCA) cross section of the Si‐QD is decreased to 8 × 10−18 cm2 by enlarging the electron/hole effective masses, which shortens the PL and Auger lifetime to 83 ns and 16.5 ps, respectively. The FCA loss is conversely increased from 0.03 cm−1 to 1.5 cm−1 with the Si‐QD size enlarged from 1.7 nm to 4.3 nm due to the enhanced FCA cross section and the increased free‐carrier density in large Si‐QDs. Both the FCA and free‐carrier relaxation processes of Si‐QDs are shortened as the radiative recombination rate is enlarged by electron–hole momentum overlapping under strong quantum confinement effect. The all‐optical return‐to‐zero on‐off keying (RZ‐OOK) modulation is performed by using the SiOx:Si‐QD waveguides, providing the transmission bit rate of the inversed RZ‐OOK data stream conversion from 0.2 to 2 Mbit/s by shrinking the Si‐QD size from 4.3 to 1.7 nm.  相似文献   

9.
In this letter, we present results of photoluminescence (PL) emission from single-layer and multilayer InAs self-organized quantum dots (QDs), which were grown on (001) InP substrate. The room temperature PL peak of the single-layer QDs locates at 1608 nm, and full width at half-maximum (FWHM) of the PL peak is 71 meV. The PL peak of the multilayer QDs locates at 1478 nm, PL intensity of which is stronger than that of single-layer QDs. The single-layer QD PL spectra also display excited state emission and state filling as the excitation intensity is increased. Low temperature PL spectra show a weak peak between the peaks of QDs and wetting layer (WL), which suggests the recombination between electrons in the WL and holes in the dots.  相似文献   

10.
周之琰  杨坤  黄耀民  林涛  冯哲川 《发光学报》2018,39(12):1722-1729
为了解决在单晶硅衬底上生长的InGaN/GaN多层量子阱发光二极管器件发光效率显著降低的问题,使用周期性δ型Si掺杂的GaN取代Si均匀掺杂的GaN作为n型层释放多层界面间的张应力。采用稳态荧光谱及时间分辨荧光谱测量,提取并分析了使用该方案前后的多层量子阱中辐射/非辐射复合速率随温度(10~300 K)的变化规律。实验结果表明引入δ-Si掺杂的n-GaN层后,非辐射复合平均激活能由(18±3)meV升高到(38±10)meV,对应非辐射复合速率随温度升高而上升的趋势变缓,室温下非辐射复合速率下降,体系中与阱宽涨落有关的浅能级复合中心浓度减小,PL峰位由531 nm左右红移至579 nm左右,样品PL效率随温度的衰减受到抑制。使用周期性δ型Si掺杂的GaN取代Si均匀掺杂的GaN作为生长在Si衬底上的InGaN/GaN多层量子阱LED器件n型层,由于应力释放,降低了多层量子阱与n-GaN界面、InGaN/GaN界面的缺陷密度,使得器件性能得到了改善。  相似文献   

11.
刘智  李亚明  薛春来  成步文  王启明 《物理学报》2013,62(7):76108-076108
利用超高真空化学气相沉积设备, 在Si (001) 衬底上外延生长了多个四层Ge/Si量子点样品. 通过原位掺杂的方法, 对不同样品中的Ge/Si量子点分别进行了未掺杂、磷掺杂和硼掺杂. 相比未掺杂的样品, 磷掺杂不影响Ge/Si量子点的表面形貌, 但可以有效增强其室温光致发光; 而硼掺杂会增强Ge/Si量子点的合并, 降低小尺寸Ge/Si量子点的密度, 但其光致发光会减弱. 磷掺杂增强Ge/Si量子点光致发光的原因是, 磷掺杂为Ge/Si量子点提供了更多参与辐射复合的电子. 关键词: Ge/Si量子点 磷掺杂 光致发光  相似文献   

12.
Herein a novel approach is reported to achieve tunable and high photoluminescence (PL) quantum yield (QY) from the self‐grown spherical TiO2 quantum dots (QDs) on fluorine doped TiO2 (F‐TiO2) flowers, mesoporous in nature, synthesized by a simple solvothermal process. The strong PL emission from F‐TiO2 QDs centered at ≈485 nm is associated with shallow and deep traps, and a record high PL QY of ≈5.76% is measured at room temperature. Size distribution and doping of F‐TiO2 nanocrystals (NCs) are successfully tuned by simply varying the HF concentration during synthesis. During the post‐growth rapid thermal annealing (RTA) under vacuum, the arbitrary shaped F‐TiO2 NCs transform into spherical QDs with smaller sizes and it shows dramatic enhancement (≈163 times) in the PL intensity. Electron spin resonance (ESR) and X‐ray photoelectron spectroscopy (XPS) confirm the high density of oxygen vacancy defects on the surface of TiO2 NCs. Confocal fluorescence microscopy imaging shows bright whitish emission from the F‐TiO2 QDs. Low temperature and time resolved PL studies reveal that the ultrafast radiative recombination in the TiO2 QDs results in highly efficient PL emission. A highly stable, biologically inert, and highly fluorescent TiO2 QDs/flowers without any capping agent demonstrated here is significant for emerging applications in bioimaging, energy, and environmental cleaning.  相似文献   

13.
测定了亚单层InGaAs/GaAs量子点-量子阱异质结构在5K下的时间分辨光致发光谱.亚单层量 子点的辐射寿命在500 ps 至 800 ps之间,随量子点尺寸的增大而增大,与量子点中激子的 较小的横向限制能以及激子从小量子点向大量子点的隧穿转移有关.光致发光上升时间强烈 依赖于激发强度密度.在弱激发强度密度下,上升时间为 35 ps,纵光学声子发射为主要的 载流子俘获机理.在强激发强度密度下,上升时间随激发强度密度的增加而减小,俄歇过程 为主要的载流子俘获机理.该结果对理解亚单层量子点器件的工作特性非常有用. 关键词: 亚单层 量子点-量子阱 时间分辨光致发光谱  相似文献   

14.
In this paper, time-varying photoconductivity (PC) and the photoluminescence (PL) of different complexes were studied. Due to thick polymer layer hindering light penetrating into porous silicon (PS) layer, intrinsic PS luminescence in polymer/PS system disappeared. The physical origin of PL may be related to the recombination mechanisms involving surface defect states such as silicon oxide, siloxene. Due to carrier transfer controlled by different energy barrier, different devices prepared from different doped Si wafer showed opposite current-voltage characteristic.  相似文献   

15.
Effects of growth conditions on the formation of InAs quantum dots (QDs) grown on GaAs (1 1 5)A substrate were investigated by using the reflection high-energy electron diffraction (RHEED) and photoluminescence spectroscopy (PL). An anomalous evolution of wetting layer was observed when increasing the As/In flux ratio. This is attributed to a change in the surface reconstruction. PL measurements show that QDs emission was strongly affected by the InAs deposited amount. No obvious signature of PL emission QDs appears for sample with 2.2 ML InAs coverage. Furthermore, carrier tunneling from the dots to the non-radiative centers via the inclination continuum band is found to be the dominant mechanism for the InAs amount deposition up to 4.2 MLs.  相似文献   

16.
We have investigated the optical properties of InAs self-assembled quantum dots (SAQDs) with the Si-doped GaAs barrier layer. Two types of samples are fabricated according to the position of the Si-doped GaAs layer. For type A samples the Si-doped GaAs layer is grown below the QDs, whereas for type B samples the Si-doped GaAs layer is grown above the QDs. For both types of samples the excited-state emissions caused by state filling are observed in photoluminescence (PL) spectra at high excitation power densities. The bandgap renormalization of QDs can be found from the shift of the PL peak energy. Particularly, for type A samples the Si atoms act as nucleation centers during the growth of InAs QDs on the Si-doped GaAs layer and affect the density and the size of the QDs. The Si-doped GaAs layer in type A samples has more effects on the properties of QDs, such as state filling and bandgap renormalization than those of type B samples.  相似文献   

17.
The intermixing of Sb and As atoms induced by rapid thermal annealing (RTA) was investigated for type II GaSb/GaAs self-assembled quantum dots (QD) formed by molecular beam epitaxy growth. Just as in InAs/GaAs QD systems, the intermixing induces a remarkable blueshift of the photoluminescence (PL) peak of QDs and reduces the inhomogeneous broadening of PL peaks for both QD ensemble and wetting layer (WL) as consequences of the weakening of quantum confinement. Contrary to InAs/GaAs QDs systems, however, the intermixing has led to a pronounced exponential increase in PL intensity for GaSb QDs with annealing temperature up to 875 °C. By analyzing the temperature dependence of PL for QDs annealed at 700, 750 and 800 °C, activation energies of PL quenching from QDs at high temperatures are 176.4, 146 and 73.9 meV. The decrease of QD activation energy with annealing temperatures indicates the reduction of hole localization energy in type II QDs due to the Sb/As intermixing. The activation energy for the WL PL was found to drastically decrease when annealed at 800 °C where the QD PL intensity surpassed WL.  相似文献   

18.
The paper presents the original study of photoluminescence (PL) and Raman scattering spectra of core–shell CdSe/ZnS quantum dots (QDs) covered by the amine-derivatized polyethylene glycol (PEG) with luminescence interface states. First commercially available CdSe/ZnS QDs with emission at 640 nm (1.94 eV) covered by PEG polymer have been studied in nonconjugated states. PL spectra of nonconjugated QDs are characterized by a superposition of PL bands related to exciton emission in a CdSe core and to the hot electron–hole recombination via high energy luminescence states. The study of high energy PL bands in QDs at different temperatures has shown that these PL bands are related to luminescence interface states at the CdSe/ZnS or ZnS/polymer interface. Then CdSe/ZnS QDs have been conjugated with biomolecules—the Osteopontin antibodies. It is revealed that the PL spectrum of bioconjugated QDs changed essentially with decreasing hot electron–hole recombination flow via luminescence interface states. It is shown that the QD bioconjugation process to Osteopontin antibodies is complex and includes the covalent and electrostatic interactions between them. The variation of PL spectra due to the bioconjugation is explained on the basis of electrostatic interaction between the QDs and biomolecule dipoles that stimulates re-charging QD interface states. The study of Raman scattering of bioconjugated CdSe/ZnS QDs has confirmed that the antibody molecules have the electric dipoles. It is shown that CdSe/ZnS QDs with luminescence interface states are promising for the study of bioconjugation effects with specific antibodies and can be a powerful technique in biology and medicine.  相似文献   

19.
Effects of thermal annealing on the emission properties of type-II InAs quantum dots (QDs) covered by a thin GaAs1−xSbx layer are investigated by photoluminescence (PL) and time-resolved PL measurements. Apart from large blueshifts and a pronounced narrowing of the QD emission peak, the annealing induced alloy intermixing also leads to enhanced radiative recombination rates and reduced localized states in the GaAs1−xSbx layer. We find that the type-II QD structure can sustain thermal annealing up to 850 °C. In particular, we find that it is possible to manipulate between type-I and type-II recombinations in annealed QDs by using different excitation powers. We demonstrate that postgrowth thermal annealing can be used to tailor the band alignment, the wave function overlaps, and hence the recombination dynamics in the InAs/GaAs1−xSbx type-II QDs.  相似文献   

20.
Time-resolved photoluminescence (PL), steady-state PL, and electroluminescence (EL) techniques have been used to characterize the carrier relaxation processes and carrier escape mechanisms in self-assembled InAs/GaAs quantum dot (SAQD) p-i-n structures under reverse bias. The measurements were performed between 5 K and room temperature on a ring mesa sample as a function of bias. At 100 K, the PL decay time originating from the n  =  1 SAQD decreases with increasing reverse bias from ∼3 ns under flat band condition to∼ 400 ps for a bias of −3 V. The data can be explained by a simple model based on electron recombination in the quantum dots (QDs) or escape out of the dots. The escape can occur by one of three possible routes: direct tunneling out of the distribution of excited electronic levels, thermally assisted tunneling of ground state electrons through the upper excited electronic states or thermionic emission to the wetting layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号