首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Graphite electrode is modified by casting multi-walled carbon nanotubes (MWCNTs) wrapped with polystyrene sulphonate (PSS) onto the surface of the bare graphite electrode. The modified electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The behavior of the modified electrode towards the oxidation of ascorbic acid (AA), dopamine (DA) and uric acid (UA) has been determined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CA). The modified electrode showed better electrocatalytic activity towards AA, DA and UA compared to bare graphite electrode. The electrochemical oxidation signals of AA, DA and UA are well separated into three distinct peaks with peak potential difference of 222, 128 and 350 mV between AA-DA, DA-UA and AA-UA respectively in CV studies and corresponding peak potential separation in DPV are 228, 120 and 348 mV. This modified electrode was successfully used for simultaneous determination of AA, DA and UA in ternary mixture.  相似文献   

2.
Thiagarajan S  Chen SM 《Talanta》2007,74(2):212-222
A novel biosensor was fabricated by electrochemical deposition of platinum and gold nanoparticles (nanoAu) with l-Cysteine on glassy carbon electrode. It was found that the nanoAu particle size distribution range was (50-80 nm), and the platinum particle size range was (200-300 nm). The hybrid film could be produced on gold and transparent indium tin oxide electrodes for different kind of studies such as electrochemical quartz crystal microbalance (EQCM), scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) and electrochemical studies. The PtAu hybrid film was applied to the electro catalytic oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) at pH 4.0 using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The modified electrode was quite effective not only to detect DA, AA and UA individually but also in simultaneous determination of these species in a mixture. The overlapping anodic peaks of DA, AA and UA were resolved into three well-defined voltammetric peaks in CV and DPV. The catalytic peak currents obtained from CV and DPV increased linearly with concentration. The relative standard deviation (% R.S.D., n = 10) for AA, DA and UA were less than 2.0% and DA, AA and UA can be determined in the ranges of 0.103-1.65, 0.024-0.384 and 0.021-0.336 mM, respectively. In addition, the modified electrode also shows good sensitivity, and stability. Satisfactory results were achieved for the determination of DA, AA and UA in dopamine injection solution, vitamin C tablets and human urine samples.  相似文献   

3.
The properties of graphite electrode (Gr) modified with poly(diallyl dimethyl ammonium chloride) (PDDA) for the detection of uric acid (UA) in the presence of dopamine (DA) and high concentration of ascorbic acid (AA) have been investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The polymer modified graphite electrode was prepared by a very simple method just by immersing the graphite electrode in PDDA solution for 20 minutes. The PDDA/Gr modified electrode displayed excellent electrocatalytic activity towards the oxidation of UA, DA and AA compared to that at the bare graphite electrode. The electrochemical oxidation signals of UA, DA and AA are well resolved into three distinct peaks with peak potential separations of 220 mV, 168 mV and 387 mV between AA‐DA, DA‐UA and AA‐UA respectively in cyclic voltammetry studies and the corresponding peak potential separations are 230 mV, 130 mV and 354 mV respectively in differential pulse voltammetry. The lowest detection limits obtained for UA, DA and AA were 1×10?7 M, 2×10?7 M and 800×10?9 M respectively. The PDDA/Gr electrode efficiently eliminated the interference of DA and a high concentration of AA in the determination of UA with good selectivity, sensitivity and reproducibility. The modified electrode was also successfully applied for simultaneous determination of UA, DA and AA in their ternary mixture.  相似文献   

4.
朱小红  林祥钦 《中国化学》2009,27(6):1103-1109
用循环伏安法(CV)选择不同电位区间来电聚合烟酰胺(NA)得到了两种聚合物膜修饰电极:poly-niacinamide/GCE (poly-NA/GCE)和poly- nicotinic acid /GCE (poly-NC/GCE)。这两电极都具有显著电化学催化作用,能明显地降低多巴胺(DA)、尿酸(UA)和抗坏血酸(AA)的氧化过电位,并在混合溶液中使这些物质的氧化峰电位距离足够大,可进行三物质的同时测定。poly-NC/GCE的电催化性能更好一些,用差分脉冲伏安法(DPV)测定抗坏血酸,线性范围为75–3000 µmol L-1,电流灵敏度为5.6 mA•L•mol-1;测定多巴胺,线性范围为0.37 – 16 µmol L-1,电流灵敏度为1140 mA•L•mol-1; 测定尿酸,线性范围为0.74 – 230 µmol L-1,电流灵敏度为102 mA•L•mol-1。该电极具有很高的灵敏度、选择性和抗污染能力。  相似文献   

5.
《Electroanalysis》2006,18(24):2458-2466
A promising electrochemical biosensor was fabricated by electrochemical grafting of ribonucleic acid (RNA) at 1.8 V (vs. SCE) on glassy carbon electrode (GCE) (denoted as RNA/GCE), for simultaneous detection of dopamine (DA) and uric acid (UA) with coexistence of excess amount of ascorbic acid (AA). The electrode was characterized by X‐ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The RNA modified layer on GCE exhibited superior catalytic ability and anionic exclusive ability in comparison with the DNA modified electrode. Three separated anodic DPV peaks were obtained at 0.312, 0.168 and ?0.016 V for UA, DA and AA, respectively, at the RNA/GCE in pH 7.0 PBS. In the presence of 2.0 mM AA, a linear range of 0.37 to 36 μM with a detection limit of 0.2 μM for DA, and in the range of 0.74 to 73 μM with a detection limit of 0.36 μM for UA were obtained. The co‐existence of 5000 fold AA did not interfere with the detection of DA or UA. The modified electrode shows excellent selectivity, good sensitivity and good stability.  相似文献   

6.
张英  任旺  李敏娇 《电化学》2012,(1):79-83
研究柠檬酸(CA)修饰玻碳电极(CA/GC)在抗坏血酸(AA)、多巴胺(DA)和尿酸(UA)混合体系中的循环伏安(CV)行为.结果表明,AA、DA和UA在CA/GC电极上氧化峰电流增大,且三者氧化峰电位明显分离(ΔEp(DA,AA)=170 mV,ΔEp(DA,UA)=130 mV,ΔEp(AA,UA)=300 mV).据此,可同时检测AA、DA和UA.在优化的实验条件下,AA、DA和UA的氧化峰电流与其浓度分别在2.0×10-6~1.5×10-3mol.L-1,6.0×10-7~1.0×10-3mol.L-1和6.0×10-7~1.0×10-3mol.L-1范围内呈线性关系.该电极重现性好,可用于盐酸多巴胺针剂DA、VC片剂AA及人体尿液UA的测定.  相似文献   

7.
The electrooxidation of dopamine (DA), uric acid (UA) and their mixture on a gold electrode modified by a self-assembled monolayer of 2-(3,4-dihydroxyphenyl)-1,3-dithialone has been studied by cyclic voltammetry (CV), chronoamperometry and differential pulse voltammetry (DPV). CV was used to investigate the redox properties of the modified electrode at various scan rates and the apparent charge transfer rate constant (k(s)), and transfer coefficient (α) were calculated. The mediated oxidation of DA at the modified electrode under the optimum condition (pH = 7.0) in CV occurs at a potential about 220 mV less positive than that of the unmodified gold electrode. The values of electron transfer coefficients (α), catalytic rate constant (k) and diffusion coefficient (D) were calculated for DA, using electrochemical methods. DPV exhibited a linear dynamic range over the concentration range of 0.2-250.0 μM and a detection limit (3σ) of 0.07 μM for DA. The modified electrode was used for simultaneous determination of DA and UA by DPV. The results showed that the electrode is highly efficient for the catalytic electrooxidation of DA and UA, leading to a remarkable peak resolution (~350 mV) for two compounds. The electrode was used for the determination of DA in an injection sample.  相似文献   

8.
Li Y  Lu Q  Shi A  Chen Y  Wu S  Wang L 《Analytical sciences》2011,27(9):921-927
This paper describes a facile and effective method to synthesize gold nanoflowers (AuNFs) by a controllable electrodeposition method induced by a L-cysteamine (L-Cys) monolayer self-assembled on the surface of a gold electrode. The AuNFs/L-Cys/Au electrodes were characterized by field emission scanning electron microscopy (FE-SEM), cyclic voltammetry, and AC impedance spectroscopy methods. This obtained AuNFs/L-Cys/Au electrode exhibits excellent electrocatalytic activity towards the oxidation of dopamine (DA) due to the synergistic effect of AuNFs and a L-Cys monolayer. Differential pulse voltammetry (DPV) experiment results show that the oxidation peak of DA is separated from the oxidation peaks of ascorbic acid (AA) and uric acid (UA), which can be used to detect DA in the presence of AA and UA, and the results are satisfactory.  相似文献   

9.
Zhang L  Lin X 《The Analyst》2001,126(3):367-370
A novel covalently modified glassy carbon electrode with glutamic acid has been fabricated via an electrochemical oxidation procedure and was applied to the catalytic oxidation of uric acid (UA) and ascorbic acid (AA), reducing the overpotentials by about 0.2 V and 0.3 V, respectively. Based on its strong catalytic function toward the oxidation of UA and AA, the modified electrode resolved the overlapping voltammetric response of UA and AA into two well-defined voltammetric peaks with both cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which can be used for the simultaneous determination of these species in a mixture. The catalytic peak current obtained from DPV was linearly dependent on the UA and AA concentration in the range 2 x 10(-6)-4 x 10(-4) mol L-1 and 1.0 x 10(-6)-4 x 10(-4) mol L-1 with correlation coefficients of 0.996 and 0.997, respectively. The detection limits (3 delta) for UA and AA were 1.1 x 10(-6) mol L-1 and 9.2 x 10(-7) mol L-1, respectively. The modified electrode shows good sensitivity, selectivity and stability, and has been applied to the determination of UA and AA simultaneously in human urine samples with satisfactory results.  相似文献   

10.
Graphene/p-aminobenzoic acid composite film modified glassy carbon electrode (Gr/p-ABA/GCE) was first employed for the sensitive determination of dopamine (DA). The electrochemical behavior of DA at the modified electrode was investigated by cyclic voltametry (CV), differential pulse voltametry (DPV) and amperometric curve. The oxidation peak currents of DA increased dramatically at Gr/p-ABA/GCE. The modified electrode was used to electrochemically detect dopamine (DA) in the presence of ascorbic acid (AA). The Gr/p-ABA composite film showed excellent electrocatalytic activity for the oxidation of DA in phosphate buffer solution (pH 6.5). The peak separation between DA and AA was large up to 220 mV. Using DPV technique, the calibration curve for DA determination was obtained in the range of 0.05-10 μM. The detection limit for DA was 20 nM. AA did not interfere with the determination of DA because of the very distinct attractive interaction between DA cations and the negatively Gr/p-ABA composite film. The proposed method exhibited good stability and reproducibility.  相似文献   

11.
A novel covalently modified glassy carbon electrode with β-cyclodextrin was prepared via electropolymerization technique for the simultaneous determination of uric acid(UA), xanthine(XA), hypoxanthine(HX) and dopamine(DA). This new electrode presented an excellent electrocatalytic activity towards the oxidation of UA, XA, HX and DA by cyclic voltammetry(CV) method. The oxidation peaks of the four compounds were well defined and had the enhanced peak currents. The separation potentials of the oxidation peaks for DA-UA, UA-XA and XA-HX were 150, 390 and 360 mV in CV, respectively. By means of differential pulse voltammetry(DPV) method, the calibration curves in the ranges of 10-225, 5-105, 10-170 and 5-150 μmol/L were obtained for UA, XA, HX and DA, respectively. The lowest detection limits(S/N=3) were 5, 1.25, 5 and 1.5 μmol/L for UA, XA, HX and DA, respectively. The practical application of the modified electrode was demonstrated by the determination of DA in hydrochloride injection and UA, XA, HX in human urine samples.  相似文献   

12.
采用循环伏安法(CV)制备了聚钙羧酸(PCCA)膜修饰的碳糊电极(CPE)。考察了电极对多巴胺(DA)、尿酸(UA)的电氧化催化性能。结果显示,聚钙羧酸膜修饰碳糊电极(PCCA/CPE)对DA有良好的电催化效果,DA呈现出一对准可逆的氧化还原峰,氧化峰电流与DA浓度在3.0×10-7~1.0×10-4mol/L范围内呈线性关系,检出限为1×10-7mol/L(S/N=3)。使用微分脉冲伏安法(DPV),DA和UA在PCCA/CPE上的氧化峰能完全分离(ΔEp=192 mV),且峰电流与浓度均呈现良好的线性关系,可实现对DA和UA的同时测定。实验还进行了实际样品测定。  相似文献   

13.
A multiwalled carbon nanotubes (MWNT) modified glassy carbon electrode (GCE) coated with poly(orthanilic acid) (PABS) film (PABS–MWNT/GCE) has been fabricated and used for simultaneous determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA) by differential pulse voltammetry (DPV). Scanning electron microscopy, Fourier transform infrared spectra, and electrochemical techniques have been used to characterize the surface morphology of the PABS–MWNT composite film and the polymerization of ABS on electrode surface. In comparison with the bare GCE and the MWNT-modified GCE, the PABS–MWNT composite film-modified GCE, which combines the advantages of MWNT and the self-doped PABS, exhibits good selectivity and sensitivity for the simultaneous and selective determination of UA and DA in the presence of AA. Due to the different electrochemical responses of AA, DA, and UA, PABS–MWNT/GCE can resolve the overlapped oxidation peak of DA and UA into two well-defined voltammetric peaks with enhanced current responses using both cyclic voltammetry (CV) and DPV. The peak potential separations between DA and UA are 170 mV using CV and 160 mV using DPV, respectively, which are large enough for the selective and simultaneous determination of these species. In the presence of 0.5 mM AA, the DPV peak currents are linearly dependent on the concentration of UA and DA in the range of 6–55 and 9–48 μM with correlation coefficients of 0.997 and 0.993, respectively. The detection limits (S/N = 3) for detecting UA and DA are 0.44 and 0.21 μM, respectively. The PABS–MWNT/GCE shows good reproducibility and stability and has been used for the simultaneous determination of DA and UA in the presence of AA in samples with satisfactory results.  相似文献   

14.
A gold nanoparticles modified carbon paste electrode (GN‐CPE) was used as a highly sensitive electrochemical sensor for determination of tyrosine (Tyr), dopamine (DA) and uric acid (UA) in phosphate buffer solution (PBS). The study and measurements were carried out by using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry methods. In DPV, the GN‐CPE could separate the oxidation peak potentials of DA and UA present in the same solution, though at the unmodified CPE the peak potentials were indistinguishable. The prepared electrode showed voltammetric responses with high sensitivity and selectivity for Tyr, DA and UA in optimal conditions, which makes it very suitable for simultaneous determination of these compounds. The calibration curves for Try, DA and UA were linear for the concentrations of each species. The proposed voltammetric approach was also applied to the determination of Tyr concentration in human serum as a real sample.  相似文献   

15.
在抗坏血酸存在下用L-赖氨酸修饰玻碳电极测定多巴胺   总被引:3,自引:0,他引:3  
黄燕生  陈静  许兵  邵会波 《化学通报》2006,69(9):656-660
采用电化学氧化法制备了L-广赖氮酸单分子层修饰玻碳电极,研究了多巴胺(DA)和抗坏血酸(AA)在该电极上的电化学行为。结果表明,L-广赖氨酸单分子层修饰玻碳电极不仅能改善多巴胺和抗坏血酸的电化学行为,而且能将多巴胺和抗坏血酸二者在裸电极上的完全重叠的单氧化峰分开成为两个完全独立的氧化峰,循环伏安(CV)图上峰间距为507mV,差分脉冲伏安(DPV)图上峰间距为460mV,由此可实现在AA的共存下对样品中的DA进行选择性测定。  相似文献   

16.
刘雪  王兰  樊阳  刘凤杰 《化学通报》2012,(5):458-462
利用在玻碳电极上修饰了TiO2-石墨烯-Nafion复合膜制得的修饰电极进行多巴胺(DA)和尿酸(UA)的同时测定。用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了该修饰电极的电化学行为。在pH为7.0的磷酸盐缓冲液(PBS)中,修饰电极对于DA和UA的电化学氧化具有良好的电催化性能。DA和UA的氧化峰电流分别在2~120和60~300μmol/L浓度范围内呈良好的线性关系,检出限分别为0.066和0.102μmol/L。实验结果表明,TiO2-石墨烯-Nafion复合膜修饰电极显著提高了检测的灵敏度,并表现出良好的选择性和重现性。  相似文献   

17.
Nanocrystalline graphite-like pyrolytic carbon film (PCF) electrode fabricated by a non-catalytic chemical vapor deposition (CVD) process was used for the simultaneous electrochemical sensing of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electrode was studied with respect to changes in electrocatalytic activity caused by a simple and fast electrochemical pretreatment. The anodized electrode exhibited excellent performance compared to many chemically modified electrodes in terms of detection limit, linear dynamic range, and sensitivity. Differential pulse voltammetry (DPV) was used for the simultaneous determination of ternary mixtures of DA, AA, and UA. Under optimum conditions, the detection limits were 2.9 μM for AA, 0.04 μM for DA, and 0.03 μM for UA with sensitivities of 0.078, 5.345, and 6.192 A M−1, respectively. The peak separation was 219 mV between AA and DA and 150 mV between DA and UA. No electrode fouling was observed and good reproducibility was obtained in all the experiments. The sensor was successfully applied for the assay of DA in an injectable drug and UA in human urine by using standard addition method.  相似文献   

18.
A nafion covered carbon nanotubes-paste electrode modified with poly(m-ferrocenylaniline), (Nf/p(FcAni)-CNTsPE), provides a novel voltammetric sensor for the selective determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). We studied the electrochemical activity of Nf/p(FcAni)-CNTsPE toward DA, UA, and AA by differential pulse voltammetry (DPV). DA and UA anodic peaks appear at 0.30 and 0.45 V, respectively while an anodic peak for AA was not observed. DPV oxidation peak values are linearly dependent on DA concentration over the range 1–150 μM (r2 = 0.992), and on UA concentration over the range 5–250 μM (r2 = 0.997). DA and UA detection limits are estimated to be 0.21 and 0.58 μM, respectively. The modified electrode shows both good selectivity and reproducibility for the selective determination of DA and UA in real samples. Finally, the modified electrode was successfully applied for the determination of DA and UA in pharmaceutical or biological sample fluids.  相似文献   

19.
Chatraei F  Zare HR 《The Analyst》2011,136(21):4595-4602
In this study, an acetaminophen-modified glassy carbon electrode (ACMGCE) was fabricated for the purpose of investigating its electrochemical behavior by cyclic voltammetry (CV). ACMGCE serves as an excellent bifunctional electrocatalyst for the oxidation of ascorbic acid (AA) and glutathione (GSH) in a phosphate buffer solution (pH 7.0). The kinetic parameters such as the electron transfer coefficient, α, and the heterogeneous electron transfer rate constant, k', for the oxidation of AA and GSH at the ACMGCE surface were determined by CV. In addition, detection limits of 3.89 μM for AA and 0.37 μM for GSH were obtained at the ACMGCE using a differential pulse voltammetric (DPV) method. In DPV, the bifunctional modified electrode could separate the oxidation peak potentials of AA, GSH, adrenaline (AD) and tryptophan (Trp) present in the same solution, though the peak potentials were indistinguishable at a bare GCE. Finally, the modified electrode was successfully applied to the determination of AA in a pharmaceutical preparation and GSH in a human plasma sample.  相似文献   

20.
In this work, a new nanomaterial of thiol functional ferrocene derivative (Fc-SH) stabilized Au NPs/carbon dots nanocomposite (Au/C NC) coupling with graphene modified glassy carbon electrode (Fc-S-Au/C NC/graphene/GCE) was fabricated to serve as a quadruplet detection platform for ultrasensitive and simultaneous determination of ascorbic acid (AA), dopamine (DA), uric acid (UA) and acetaminophen (AC). The Au/C NC was synthesized by adding HAuCl4 into carbon nanodots solution without using any additional reductant and stabilizing agent. Then the Fc-SH was utilized as the protective and capping agent to modify the Au/C NC. Transmission electron microscopy (TEM), UV–Vis, Fourier-transform infrared (FT-IR), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) were adopted to characterize the morphology and electrochemical properties of the materials and the electrodes. The Fc-S-Au/C NC/graphene/GCE exhibits a synergistic catalytic and amplification effects towards oxidation of AA, DA, UA and AC owing to the existence of the nanomaterial and electron mediator. When simultaneous detection of AA, DA, UA and AC, the oxidation peak potentials of the four compounds on the electrode can be well separated and the peak currents were linearly dependent on their concentrations. The quadruplet detection platform shows excellent linear range and ultrasensitive response to the four components, the detection limits were estimated to be as low as 1.00, 0.05, 0.12 and 0.10 μM (S/N = 3), and the modified electrode exhibits excellent stability and reproducibility. The proposed electrode has been successfully applied to detect of these four analytes in real samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号