首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper is concerned with a priori error estimates of a finite element method for numerical reconstruction of some unknown distributed flux in an inverse heat conduction problem. More precisely, some unknown distributed Neumann data are to be recovered on the interior inaccessible boundary using Dirichlet measurement data on the outer ac- cessible boundary. The main contribution in this work is to establish the some a priori error estimates in terms of the mesh size in the domain and on the accessible/inaccessible boundaries, respectively, for both the temperature u and the adjoint state p under the lowest regularity assumption. It is revealed that the lower bounds of the convergence rates depend on the geometry of the domain. These a priori error estimates are of immense interest by themselves and pave the way for proving the convergence analysis of adaptive techniques applied to a general classes of inverse heat conduction problems. Numerical experiments are presented to verify our theoretical prediction.  相似文献   

2.
In this paper we continue the study of discontinuous Galerkin finite element methods for nonlinear diffusion equations following the direct discontinuous Galerkin (DDG) meth- ods for diffusion problems [17] and the direct discontinuous Galerkin (DDG) methods for diffusion with interface corrections [18]. We introduce a numerical flux for the test func- tion, and obtain a new direct discontinuous Galerkin method with symmetric structure. Second order derivative jump terms are included in the numerical flux formula and explicit guidelines for choosing the numerical flux are given. The constructed scheme has a sym- metric property and an optimal L2 (L2) error estimate is obtained. Numerical examples are carried out to demonstrate the optimal (k + 1)th order of accuracy for the method with pk polynomial approximations for both linear and nonlinear problems, under one-dimensional and two-dimensional settings.  相似文献   

3.
In this paper, we consider the finite element approximation of the distributed optimal control problems of the stationary Benard type under the pointwise control constraint. The states and the co-states are approximated by polynomial functions of lowest-order mixed finite element space or piecewise linear functions and the control is approximated by piecewise constant functions. We give the superconvergence analysis for the control; it is proved that the approximation has a second-order rate of convergence. We further give the superconvergence analysis for the states and the co-states. Then we derive error estimates in L^∞-norm and optimal error estimates in L^2-norm.  相似文献   

4.
In this paper, both the standard finite element discretization and a two-scale finite element discretization for SchrSdinger equations are studied. The numerical analysis is based on the regularity that is also obtained in this paper for the Schroedinger equations. Very satisfying applications to electronic structure computations are provided, too.  相似文献   

5.
This paper is devoted to the study of a nonlinear evolution eddy current model of the type δtB(H) + △↓× ( △↓ × H) =0 subject to homogeneous Dirichlet boundary conditions H × v = 0 and a given initial datum. Here, the magnetic properties of a soft ferromagnet are linked by a nonlinear material law described by B(H). We apply the backward Euler method for the time discretization and we derive the error estimates in suitable function spaces. The results depend on the nonlinearity of B(H).  相似文献   

6.
We build finite difference schemes for a class of fully nonlinear parabolic equations. The schemes are polyhedral and grid aligned. While this is a restrictive class of schemes, a wide class of equations are well approximated by equations from this class. For regular (C2,α) solutions of uniformly parabolic equations, we also establish of convergence rate of O(α). A case study along with supporting numerical results is included.  相似文献   

7.
A fully discrete finite difference scheme for dissipative Klein-Gordon-SchrSdinger equations in three space dimensions is analyzed. On the basis of a series of the time-uniform priori estimates of the difference solutions and discrete version of Sobolev embedding the- orems, the stability of the difference scheme and the error bounds of optimal order for the difference solutions are obtained in H2 × H2 ×H1 over a finite time interval. Moreover, the existence of a maximal attractor is proved for a discrete dynamical system associated with the fully discrete finite difference scheme.  相似文献   

8.
Digital inpainting is a fundamental problem in image processing and many variational models for this problem have appeared recently in the literature. Among them are the very successfully Total Variation (TV) model [11] designed for local inpainting and its improved version for large scale inpainting: the Curvature-Driven Diffusion (CDD) model [10]. For the above two models, their associated Euler Lagrange equations are highly nonlinear partial differential equations. For the TV model there exists a relatively fast and easy to implement fixed point method, so adapting the multigrid method of [24] to here is immediate. For the CDD model however, so far only the well known but usually very slow explicit time marching method has been reported and we explain why the implementation of a fixed point method for the CDD model is not straightforward. Consequently the multigrid method as in [Savage and Chen, Int. J. Comput. Math., 82 (2005), pp. 1001-1015] will not work here. This fact represents a strong limitation to the range of applications of this model since usually fast solutions are expected. In this paper, we introduce a modification designed to enable a fixed point method to work and to preserve the features of the original CDD model. As a result, a fast and efficient multigrid method is developed for the modified model. Numerical experiments are presented to show the very good performance of the fast algorithm.  相似文献   

9.
In this work we consider the Reduced Basis method for the solution of parametrized advection-reaction partial differential equations. For the generation of the basis we adopt a stabilized finite element method and we define the Reduced Basis method in the "primal- dual" formulation for this stabilized problem. We provide a priori Reduced Basis error estimates and we discuss the effects of the finite element approximation on the Reduced Basis error. We propose an adaptive algorithm, based on the a posteriori Reduced Basis error estimate, for the selection of the sample sets upon which the basis are built; the idea leading this algorithm is the minimization of the computational costs associated with the solution of the Reduced Basis problem. Numerical tests demonstrate the efficiency, in terms of computational costs, of the "primal-dual" Reduced Basis approach with respect to an "only primal" one. Parametrized advection-reaction partial differential equations, Reduced Basis method, "primal-dual" reduced basis approach, Stabilized finite element method, a posteriori error estimation.  相似文献   

10.
In this paper, we investigate the adjoint equation in photoacoustic tomography with variable sound speed, and propose three variational iterative algorithms. The basic idea of these algorithms is to compute the original equation and the adjoint equation iteratively. We present numerical examples and show the well performance of these variational iterative algorithms.  相似文献   

11.
In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization Galerkin method. A priori error estimates are derived for the state, the adjoint state and the control. Moreover, residual type a posteriori error estimates in the L^2-norm are obtained. Finally, two numerical experiments are presented to illustrate the theoretical results.  相似文献   

12.
In this review, we intend to clarify the underlying ideas and the relations between various multigrid methods ranging from subset decomposition, to projected subspace decomposition and truncated multigrid. In addition, we present a novel globally convergent inexact active set method which is closely related to truncated multigrid. The numerical properties of algorithms are carefully assessed by means of a degenerate problem and a problem with a complicated coincidence set.  相似文献   

13.
The inverse black body radiation problem, which is to reconstruct the area temperature distribution from the measurement of power spectrum distribution, is a well-known ill-posed problem. In this paper, a variational expectation-maximization (EM) method is developed and its convergence is studied. Numerical experiments demonstrate that the variational EM method is more efficient and accurate than the traditional methods, including the Tikhonov regularization method, the Landweber method and the conjugate gradient method.  相似文献   

14.
In this paper, a new Schwarz method called restricted additive Schwarz method (RAS) is presented and analyzed for a kind of nonlinear complementarity problem (NCP). The method is proved to be convergent by using weighted maximum norm. Besides, the effect of overlap on RAS is also considered. Some preliminary numerical results are reported to compare the performance of RAS and other known methods for NCP.  相似文献   

15.
Nonlinear rank-one modification of the symmetric eigenvalue problem arises from eigenvibrations of mechanical structures with elastically attached loads and calculation of the propagation modes in optical fiber. In this paper, we first study the existence and uniqueness of eigenvalues, and then investigate three numerical algorithms, namely Picard iteration, nonlinear Rayleigh quotient iteration and successive linear approximation method (SLAM). The global convergence of the SLAM is proven under some mild assumptions. Numerical examples illustrate that the SLAM is the most robust method.  相似文献   

16.
In this paper, we introduce a mixed finite element method on a staggered mesh for the numerical solution of the steady state Navier-Stokes equations in which the two components of the velocity and the pressure are defined on three different meshes. This method is a conforming quadrilateral Q1 × Q1 - P0 element approximation for the Navier-Stokes equations. First-order error estimates are obtained for both the velocity and the pressure. Numerical examples are presented to illustrate the effectiveness of the proposed method.  相似文献   

17.
We propose a novel numerical approach for delay differential equations with vanishing proportional delays based on spectral methods. A Legendre-collocation method is employed to obtain highly accurate numerical approximations to the exact solution. It is proved theoretically and demonstrated numerically that the proposed method converges exponentially provided that the data in the are smooth. given pantograph delay differential equation  相似文献   

18.
Over the last couple of years molecular imaging has been rapidly developed to study physiological and pathological processes in vivo at the cellular and molecular levels. Among molecular imaging modalities, optical imaging stands out for its unique advantages, especially performance and cost-effectiveness. Bioluminescence tomography (BLT) is an emerging optical imaging mode with promising biomedical advantages. In this survey paper, we explain the biomedical significance of BLT, summarize theoretical results on the analysis and numerical solution of a diffusion based BLT model, and comment on a few extensions for the study of BLT.  相似文献   

19.
In this paper, a two-scale higher-order finite element discretization scheme is proposed and analyzed for a Schroedinger equation on tensor product domains. With the scheme, the solution of the eigenvalue problem on a fine grid can be reduced to an eigenvalue problem on a much coarser grid together with some eigenvalue problems on partially fine grids. It is shown theoretically and numerically that the proposed two-scale higher-order scheme not only significantly reduces the number of degrees of freedom but also produces very accurate approximations.  相似文献   

20.
We study the smooth LU decomposition of a given analytic functional A-matrix A(A) and its block-analogue. Sufficient conditions for the existence of such matrix decompositions are given, some differentiability about certain elements arising from them are proved, and several explicit expressions for derivatives of the specified elements are provided. By using these smooth LU decompositions, we propose two numerical methods for computing multiple nonlinear eigenvalues of A(A), and establish their locally quadratic convergence properties. Several numerical examples are provided to show the feasibility and effectiveness of these new methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号