首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, both the standard finite element discretization and a two-scale finite element discretization for SchrSdinger equations are studied. The numerical analysis is based on the regularity that is also obtained in this paper for the Schroedinger equations. Very satisfying applications to electronic structure computations are provided, too.  相似文献   

2.
In this paper, we consider 2D and 3D Darcy-Stokes interface problems. These equations are related to Brinkman model that treats both Darcy's law and Stokes equations in a single form of PDE but with strongly discontinuous viscosity coefficient and zerothorder term coefficient. We present three different methods to construct uniformly stable finite element approximations. The first two methods are based on the original weak formulations of Darcy-Stokes-Brinkman equations. In the first method we consider the existing Stokes elements. We show that a stable Stokes element is also uniformly stable with respect to the coefficients and the jumps of Darcy-Stokes-Brinkman equations if and only if the discretely divergence-free velocity implies almost everywhere divergence-free one. In the second method we construct uniformly stable elements by modifying some well-known H(div)-conforming elements. We give some new 2D and 3D elements in a unified way. In the last method we modify the original weak formulation of Darcy-Stokes- Brinkman equations with a stabilization term. We show that all traditional stable Stokes elements are uniformly stable with respect to the coefficients and their jumps under this new formulation.  相似文献   

3.
In this paper, the finite element method and the boundary element method are combined to solve numerically an exterior quasilinear elliptic problem. Based on an appropriate transformation and the Fourier series expansion, the exact quasilinear artificial boundary conditions and a series of the corresponding approximations for the given problem are presented. Then the original problem is reduced into an equivalent problem defined in a bounded computational domain. We provide error estimate for the Galerkin method. Numerical results are presented to illustrate the theoretical results.  相似文献   

4.
The application of a standard Galerkin finite element method for convection-diffusion problems leads to oscillations in the discrete solution, therefore stabilization seems to be necessary. We discuss several recent stabilization methods, especially its combination with a Galerkin method on layer-adapted meshes. Supercloseness results obtained allow an improvement of the discrete solution using recovery techniques.  相似文献   

5.
Consider a time-harmonic electromagnetic plane wave incident on a biperiodic structure in R^3. The periodic structure separates two homogeneous regions. The medium inside the structure is chiral and nonhomogeneous. In this paper, variational formulations coupling finite element methods in the chiral medium with a method of integral equations on the periodic interfaces are studied. The well-posedness of the continuous and discretized problems is established. Uniform convergence for the coupling variational approximations of the model problem is obtained.  相似文献   

6.
We build finite difference schemes for a class of fully nonlinear parabolic equations. The schemes are polyhedral and grid aligned. While this is a restrictive class of schemes, a wide class of equations are well approximated by equations from this class. For regular (C2,α) solutions of uniformly parabolic equations, we also establish of convergence rate of O(α). A case study along with supporting numerical results is included.  相似文献   

7.
In this paper, we consider the finite element approximation of the distributed optimal control problems of the stationary Benard type under the pointwise control constraint. The states and the co-states are approximated by polynomial functions of lowest-order mixed finite element space or piecewise linear functions and the control is approximated by piecewise constant functions. We give the superconvergence analysis for the control; it is proved that the approximation has a second-order rate of convergence. We further give the superconvergence analysis for the states and the co-states. Then we derive error estimates in L^∞-norm and optimal error estimates in L^2-norm.  相似文献   

8.
In this paper, we investigate a priori error estimates and superconvergence properties for a model optimal control problem of bilinear type, which includes some parameter estimation application. The state and co-state are discretized by piecewise linear functions and control is approximated by piecewise constant functions. We derive a priori error estimates and superconvergence analysis for both the control and the state approximations. We also give the optimal L^2-norm error estimates and the almost optimal L^∞-norm estimates about the state and co-state. The results can be readily used for constructing a posteriori error estimators in adaptive finite element approximation of such optimal control problems.  相似文献   

9.
This paper is concerned with a priori error estimates of a finite element method for numerical reconstruction of some unknown distributed flux in an inverse heat conduction problem. More precisely, some unknown distributed Neumann data are to be recovered on the interior inaccessible boundary using Dirichlet measurement data on the outer ac- cessible boundary. The main contribution in this work is to establish the some a priori error estimates in terms of the mesh size in the domain and on the accessible/inaccessible boundaries, respectively, for both the temperature u and the adjoint state p under the lowest regularity assumption. It is revealed that the lower bounds of the convergence rates depend on the geometry of the domain. These a priori error estimates are of immense interest by themselves and pave the way for proving the convergence analysis of adaptive techniques applied to a general classes of inverse heat conduction problems. Numerical experiments are presented to verify our theoretical prediction.  相似文献   

10.
In this paper, we consider the finite element method and discontinuous Galerkin method for the stochastic Helmholtz equation in R^d (d = 2, 3). Convergence analysis and error estimates are presented for the numerical solutions. The effects of the noises on the accuracy of the approximations are illustrated. Numerical experiments are carried out to verify our theoretical results.  相似文献   

11.
A unified a posteriori error analysis has been developed in [18, 21-23] to analyze the finite element error a posteriori under a universal roof. This paper contributes to the finite element meshes with hanging nodes which are required for local mesh-refining. The twodimensional 1-irregular triangulations into triangles and parallelograms and their combinations are considered with conforming and nonconforming finite element methods named after or by Courant, Q1, Crouzeix-Raviart, Poisson, Stokes and Navier-Lamé equations Han, Rannacher-Turek, and others for the The paper provides a unified a priori and a posteriori error analysis for triangulations with hanging nodes of degree ≤ 1 which are fundamental for local mesh refinement in self-adaptive finite element discretisations.  相似文献   

12.
In this paper, we consider lower order rectangular finite element methods for the singularly perturbed Stokes problem. The model problem reduces to a linear Stokes problem when the perturbation parameter is large and degenerates to a mixed formulation of Poisson's equation as the perturbation parameter tends to zero. We propose two 2D and two 3D nonconforming rectangular finite elements, and derive robust discretization error estimates. Numerical experiments are carried out to verify the theoretical results.  相似文献   

13.
Based on the low-order conforming finite element subspace (Vh, Mh) such as the P1-P0 triangle element or the Q1-P0 quadrilateral element, the locally stabilized finite element method for the Stokes problem with nonlinear slip boundary conditions is investigated in this paper. For this class of nonlinear slip boundary conditions including the subdifferential property, the weak variational formulation associated with the Stokes problem is an variational inequality. Since (Vh, Mh) does not satisfy the discrete inf-sup conditions, a macroelement condition is introduced for constructing the locally stabilized formulation such that the stability of (Vh, Mh) is established. Under these conditions, we obtain the H1 and L2 error estimates for the numerical solutions.  相似文献   

14.
It is well-known that artificial boundary conditions are crucial for the efficient and accurate computations of wavefields on unbounded domains. In this paper, we investigate stability analysis for the wave equation coupled with the first and the second order absorbing boundary conditions. The computational scheme is also developed. The approach allows the absorbing boundary conditions to be naturally imposed, which makes it easier for us to construct high order schemes for the absorbing boundary conditions. A thirdorder Lagrange finite element method with mass lumping is applied to obtain the spatial discretization of the wave equation. The resulting scheme is stable and is very efficient since no matrix inversion is needed at each time step. Moreover, we have shown both abstract and explicit conditional stability results for the fully-discrete schemes. The results are helpful for designing computational parameters in computations. Numerical computations are illustrated to show the efficiency and accuracy of our method. In particular, essentially no boundary reflection is seen at the artificial boundaries.  相似文献   

15.
We compute the waves propagating on the compact surface of constant negative curvature and genus 2 that is a toy model in quantum chaos theory and cosmic topology. We adopt a variational approach using finite elements. We have to implement the action of the fuchsian group by suitable boundary conditions of periodic type. Despite the ergodicity of the dynamics that is quantum weak mixing, the computation is very accurate. A spectral analysis of the transient waves allows to compute the spectrum and the eigenfunctions of the Laplace-Beltrami operator. We test the exponential decay due to a localized dumping satisfying the assumption of geometric control.  相似文献   

16.
This paper covers the dynamics problems. The review and some aspects of main development stages of using Multigrid method for fluid multigrid technics are presented. Some approaches for solving Navier-Stokes equations and convection- diffusion problems are considered.  相似文献   

17.
The artificial boundary method is applied to solve three-dimensional exterior problems. Two kind of rotating ellipsoids are chosen as the artificial boundaries and the exact artificial boundary conditions are derived explicitly in terms of an infinite series. Then the well-posedness of the coupled variational problem is obtained. It is found that error estimates derived depend on the mesh size, truncation term and the location of the artificial boundary. Three numerical examples are presented to demonstrate the effectiveness and accuracy of the proposed method.  相似文献   

18.
We develop a finite element method with rectangular perfectly matched layers (PMLs) for the wave scattering from two-dimensional cavities. The unbounded computational domain is truncated to a bounded one by using of a rectangular perfectly matched layer at the open aperture. The PML parameters such as the thickness of the layer and the fictitious medium property are determined through sharp a posteriori error estimates. Numerical experiments are carried out to illustrate the competitive behavior of the proposed method.  相似文献   

19.
This paper proposes a reliable and efficient a posteriori error estimator for the finite element methods for the beam problem. It is proved that the error can be bounded by the computable error estimator from above and below up to multiplicative constants that do neither depend on the meshsize nor on the thickness of the beam.  相似文献   

20.
In this paper, we study adaptive finite element discretisation schemes for a class of parameter estimation problem. We propose to efficient algorithms for the estimation problem use adaptive multi-meshes in developing We derive equivalent a posteriori error estimators for both the state and the control approximation, which particularly suit an adaptive multi-mesh finite element scheme. The error estimators are then implemented and tested with promising numerical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号