首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Synthesis of three tetrasaccharides, namely, 0-α-L-fucopyranosyl-(1→3)-0-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1→3)-0-(β-D-galactopyranosyl)-(1→4)-β-D-glucopyranose (7), 0-α-L-fucopyranosyl-(1→4)-0-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1→3)-0-(β-D-galactopyranosyl)-(1→4)-D-glucopyranose (9), and 0-α-L-fucopyransoyl-(1→3)-0-(2-acetamido-2-deoxy-β-D-glucopyransoyl)-(1→6)-0-(β-D-galactopyranosyl)-(1→4)-D-glucopyranose (15) has been described. Their structures have been established by 13C NMR spectroscopy.  相似文献   

2.
A pentasaccharide, the major repeating unit of the lipopolysaccharide (LPS) of the nitrogen fixing bacterium Acetobacter diazotrophicus PAL 5 was efficiently synthesized as its allyl glycoside using a regio- and stereo-selective strategy. The key acceptor, allyl 3-O-acetyl-4-O-benzoyl-α-l-rhamnopyranoside (3), was prepared by selective 3-O-acetylation of allyl 4-O-benzoyl-α-l-rhamnopyranoside. Condensation of 3 with 2,3,4,6-tetra-O-benzoyl-α-d-glucopyranosyl trichloroacetimidate furnished the disaccharide 5. Deallylation and subsequent trichloroacetimidation of 5 afforded 2,3,4,6-tetra-O-benzoyl-β-d-glucopyranosyl-(1→2)-3-O-acetyl-4-O-benzoyl-α-l-rhamnopyranosyl trichloroacetimidate (10). Selective 3-O-glycosylation of allyl α-l-rhamnopyranoside (1) with 10 followed by benzoylation gave trisaccharide (12), which could be conveniently converted to a donor (14). Condensation of 14 with allyl 3,4-di-O-benzoyl-α-l-rhamnopyranoside (15) gave tetrasaccharide 16. Selective deacetylation of 16 gave the acceptor 17 which was ribosylated to furnish the protected pentasaccharide, and finally deprotection led to the title compound.  相似文献   

3.
Propyl O-(α-L-rhamncpyranosyl)-(1→3)-[2,4-di-O-(2s-methylbutyryl)-α-L-rham-nopyranosyl]-(1→2)-(3-O-acetyl-β-D-glucopyranosyl)-(1→2)-β-D-fucopyranoside (1), the tetrasac-charide moiety of Tricolorin A, was synthesized in total 23 steps with a longest linear sequence of 10 steps, and overall yield of 3.7% from D-Glucose. The isomerization of the dioxolane-type berzyli-dene in the presence of NIS/AgOTf was observed. Tetrasaccharide 1 exhibited no activity against the cultured P388 cell as Tricolorin A did.  相似文献   

4.
An efficient synthesis ofα-D-GlcpNAc-(1→2)-[α-D-ManpNAc-(1→3)-]α-L-Rhap-(1→2)-α-L-Rhap-(1→3)-α-L-Rhap(1), the repeating unit of the O10 antigen from Acinetobacter baumannii was achieved via sequential assembly of the building blocks,p- methoxylphenyl 2,4-di-O-benzoyl-α-L-rhamnopyranoside(2);2-O-allyloxycarbonyl-3,4-di-O-bcnzoyl-α-L-rhamnopyranosyl tri- chloroacetimidate(3);4-methoxylphenyl 3-O-allyloxycarbonyl-4-O-benzoyl-α-L-rhanmopyranoside(4);2-azido-3-O-benzoyl-2- deoxy-4,6-O-isopropylidene-α-D-mannopyranosyl trichloroacetirnidatc(5);2-azido-3,4,6-tri-O-benzoyl-2-deoxy-α,β-D-glucopyr- ano syl trichloroacetimidatc(6).The total yield of 1 from 4 was 4.7%.  相似文献   

5.
An antimetastatic tetrasaccharide T1,β-D-Gal-(1→4)-β-D-GlcpNAc-(1→6)-α-D-Manp-(1→6)-β-D-Manp-OMe,was synthesized with two approaches.The first approach was a conventional method employing thioglycoside and Koenigs-Knorr glycosylation reaction in 24%overall yield.The second one was a novel route through the azidoiodo-glycosylation strategy by using 2-iodo-2-deoxylactosyl azide as the donor in 36%overall yield.  相似文献   

6.
Abstract

Different reaction conditions were investigated for the preparation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (5). Compound 5 on reaction with 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide afforded the 4-O-substituted 2-acetamido-2-deoxy-β-D-glucopyranosyl derivative which, on O-deacetylation, gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-β-D-galactopyranosyl-β-D-glucopyranoside (8). The trimethylsilyl (Me3Si) derivative of 8, on treatment with pyridineacetic anhydride-acetic acid for 2 days, gave the disaccharide derivative having an O-acetyl group selectively introduced at the primary position and Me3Si groups at the secondary positions. The latter groups were readily cleaved by treatment with aqueous acetic acid in methanol to afford benzyl 2-acetamido-4-O-(6-O-acetyl-β-D-galactopyranosyl)-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside, which on isopropylidenation gave the desired, key intermediate benzyl 2-acetamido-4-O-(6-O-acetyl-3,4-O-isopropylidene-β-D-galactopyranosyl)-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (12). Reaction of 12 with 2,3,4-tri-O-benzyl-α-L-fucopyranosyl bromide under catalysis by bromide ion afforded the trisaccharlde derivative from which the title trisaccharide was obtained by systematic removal of the protective groups. The structures of the final trisaccharide and of various intermediates were established by 1H and 13C NMR spectroscopy.  相似文献   

7.
ABSTRACT

Synthesis of the terminal trisaccharide sequence of the ganglioside GD3, α-D-Neup5Ac-(2→8)-α-D-Neup5Ac-(2→3)-β-D-Galp-(1→4)-β-D-Glcp-(1→1)-Cer (2) was achieved by employing an α-(2→8) disialyl glycosyl donor (1). Condensation of 1 with the glycosyl acceptor 6, propyl 4,6-O-benzylidene-β-D-galactopyranoside, gave the desired protected trisaccharide 10 (14%) as well as the elimination and hydrolysis products of 6, compounds 8 and 9 respectively. O-Deacetylation and debenzylation of 10 gave the final trisaccharide 11, as its propyl glycoside.  相似文献   

8.
Tetrasaccharide GlcMan 3 is an inhibitor of GlcMan 9GlcNAc 2 binding to calnexin, a chaperone protein involved in CFTR-ΔF 508 retention. A convergent route to its methyl glycoside, the title tetrasaccharide, was developed. The key building block Glc α (1→3) Man 6 was stereoselectively obtained by condensation of a trichloroacetimidate glucosyl donor with an ethyl thiomannopyranoside acceptor. Di-mannose moiety 10 and final compound 12 resulted from thioglycoside activations.  相似文献   

9.
4-Methoxyphenyl glycoside of β-D-Galp-(1→6)-[α-L-Araf-(1→3)-]β-D-Galp-(1→6)-β-D-Galp-(1→6)-{β-D-Galp-(1→6)-[α-L-Araf-(1→3)-]β-D-Galp-(1→6)-β-D-Galp-(1→6)-}2β-D-Galp-(1→6)-[α-L-Araf-(1→)3)-]β-D-Galp-(1→)6)-β-D-Galp was synthesized with 2,3,4,6-tetra-O-benzoyl-α-D-galactopyranosyl trichloroacetimidate (1), 6-O-acetyl-2,3,4-tri-O-benzoyl-α-D-galactopyranosyl trichloroacetimidate (11), 4-methoxyphenyl 3-O-allyl-2,4-tri-O-benzoyl-β-D-galactopyranoside (2),isopropyl 3-O-allyl-2,4-tri-O-benzoyl--thio-β-D-galactopyranoside (12),4-methoxyphenyl 2,3,4-tri-O-benzoyl-β-D-galactopyranoside (5), and 2,3,5-tri-O-benzoyl-α-L-arabinofuranosyl trichloroacetimidate (8) as the key synthons.  相似文献   

10.
Two tetrameric arabinogalactans, β-D-galactopyranosyl-(1→6)-β-D-galactopyranosyl-(1→6)-[α-L-arabinofuranosyl-(1→3)]-D-galactopyranose (14) and α-L-arabinofuranosyl-(1→3)-β-D-galactopyranosyl-(1→6)-β-D-galactopyranosyl-(1→6)-D-galactopyranose (25), which are good candidates for CCRC-M7 epitope characterization, were synthesized efficiently using a convergent strategy. Migration of an acceptor acetyl group proved to be an obstacle to synthesis, but regioselective glycosylation or 4-O-benzyl protection of the acceptor circumvented this problem allowing efficient synthesis of the 1→6 linked target compounds.  相似文献   

11.
The protected apiose-containing disaccharide, benzyl O-(2,3, 3'-tri-O-acetyl-β-D-apiofuranosyl)-( 1→3)-2, 4-di-O-benzoyl-α-D-xylopyranoside, was synthesized and its X-ray structure provided.  相似文献   

12.
Summary Binuclear metal complexes of the type [M(HMTE)-(H2O)2]2, where HMTE=1-(-hydroxynaphthyl)-2-(3-methyl-5-mercapto-1,2,4-triazolc)2-aza-ethane and M-CuII, CoII, NiII and MnII have been prepared and characterized. An octahedral geometry around the metals is proposed. The complexes have been screened as possible fungicides.  相似文献   

13.
Abstract

4-Nitrophenyl 2,3-O-isopropylidine-α-D-mannopyranoside 2 was condensed with O-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyl)-(1→2)-3,4,6-tri-O-acetyl-α-D-mannopyranosyl bromide 1 and 2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyl bromide 11 in the presence of mercuric cyanide. Products were deprotected to yield, respectively, 4-nitrophenyl O-α-D-mannopyranosyl-(1→2)-O-α-D-mannopyranosyl-(1→6)-α-D-mannopyranoside 6 and 4-nitrophenyl O-α-D-mannopyranosyl-(1→6)-α-D-mannopyranoside 14. The 4-nitrophenyl group of 6 was reduced to give title trisaccharide. Bromide 1 was also condensed with methyl 2,3,4-tri-O-benzyl-α-D-manopyranoside 3 in the presence of silver trifluoromethanesulfonate and tetramethylurea to give protected trisaccharide derivative which was deprotected to furnish, methyl O-α-D-mannopyranosyl-(1→2)-O-α-D-mannopyranosyl-(1→6)-α-D-mannopyranoside 10. The identities of all protected and deprotected compounds were supported by 1H and 13C NMR spectral data.  相似文献   

14.
Condensation of 2-methyl-1-pyrroline with chloroacetone or 3-chloro-2-butanone using LDA in THF afforded novel 2-(3-hydroxy-2-methyl-1-alkenyl)-1-pyrrolines via a peculiar reaction mechanism instead of the anticipated 2-(3-oxobutyl)-1-pyrrolines. The intermediacy of 2-(2,3-epoxy-2-methylalkyl)-1-pyrrolines in the latter transformation was demonstrated by immediate reductive epoxide ring opening utilizing lithium aluminium hydride in diethyl ether. Furthermore, 2-(3-oxobutyl)-1-pyrroline was prepared via an alternative approach through alkylation of 2-methyl-1-pyrroline with 3-chloro-2-(methoxymethyloxy)-1-propene using LDA in THF, followed by acid hydrolysis. Reduction of 2-(3-oxobutyl)-1-pyrroline by sodium borohydride in methanol afforded the corresponding 2-(3-hydroxybutyl)-1-pyrroline in good yield.  相似文献   

15.
An array of NMR spectroscopy experiments have been carried out to obtain conformationally dependent (1)H,(13)C- and (13)C,(13)C-spin-spin coupling constants in the trisaccharide α-L-Rhap-(1 → 2)[α-L-Rhap-(1 → 3)]-α-L-Rhap-OMe. The trisaccharide was synthesized with (13)C site-specific labeling at C2' and C2″, i.e. in the rhamnosyl groups in order to alleviate (1)H spectral overlap. This facilitated the measurement of a key trans-glycosidic proton-proton cross-relaxation rate using 1D (1)H,(1)H-T-ROESY experiments as well as a (3)J(C, H) coupling employing 1D (1)H,(13)C-long-range experiments, devoid of potential interference from additional J coupling. By means of both the natural abundance compound and the (13)C-labeled sample 2D (1)H,(13)C-J-HMBC and (1)H,(13)C-HSQC-HECADE NMR experiments, total line-shape analysis of (1)H NMR spectra and 1D (13)C NMR experiments were employed to extract (3)J(C, H) , (2)J(C, H), (3)J(C, C), and (1)J(C, C) coupling constants. The (13)C site-specific labeling facilitates straightforward determination of (n)J(C, C) as the splitting of the (13)C natural abundance resonances. This study resulted in eight conformationally dependent coupling constants for the trisaccharide and illustrates the use of (13)C site-specific labeling as a valuable approach that extends the 1D and 2D NMR methods in current use to attain both hetero- and homonuclear spin-spin coupling constants that subsequently can be utilized for conformational analysis.  相似文献   

16.
Synthesis of key intermediates leading to 2-iso-oxacephems was carried out starting from l- and d-threonine. As predicted in our previous paper (Tetrahedron Lett. 1995, 36, 8303–8306) all diastereomers of 2-iso-oxacephems can be prepared from the appropriate enantiomers of the amino acid threonine. The absolute configuration of the 2,3- and α-carbon atoms in the β-lactam structure was determined by X-ray crystallographic studies.  相似文献   

17.
Abstract

The allyl β-glycosides of a trisaccharide O-β-D-Glcp-(1→3)-O-[β-D-Glcp-(1→6)]-β-D-Glcp and of a tetrasaccharide O-β-D-Glqp-(1→3)-O-[β-D-Glqp-(1→6)]-O-β-D-Glcp-(1→3)-β-D-Glcp, corresponding to the branching point or the repeating unit of antitumor (1→6)-branched-(1→3)-β-D-glucans, have been synthesized starting from ethyl 2-O-benzoyl-4,6-O-benzylidene-l-thio-α-D-glucopyranoside and copolymerized in a radical reaction with acrylamide to obtain polyacrylamide copolymers containing the tri-and tetra-saccharides for immunochemical studies of schizophyllan.  相似文献   

18.
麦芽糖基(α-1→6)β-环糊精的酶法合成和结构鉴定   总被引:1,自引:0,他引:1  
采用地衣芽孢杆菌普鲁蓝酶合成Mal-β-CD, 反应产物体系成分简单, 易于分离, Mal-β-CD的转化率可达到56%.  相似文献   

19.
本文以3-O-烯丙基-6-O-乙酰基-2,4-二-O-苯甲酰基-α-D-葡萄糖三氯乙酰亚氨酯1为原料,设计合成了尚未见报道的十二烷基β-D-葡萄吡喃糖基-(1→3)-[β-D-葡萄吡喃糖基-(1→6)]-β-D-葡萄吡喃糖基-(1→6)-β-D-葡萄吡喃糖苷6。其组成和结构已由元素分析、1H NMR、13C NMR表征。  相似文献   

20.
A simple two-step method for the selective preparation of anomerically pure 1α- and 1β-(indol-2-yl)deoxyribose derivatives was developed. The synthesis was based on the Sonogashira reaction of 1α- and 1β-ethynyldeoxyribose and 2-haloanilines followed by a Pd-complex catalyzed cyclization to the corresponding indolyldeoxyribosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号