首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibers of PA9‐T, a new semiaromatic polyamide containing a long aliphatic chain, were prepared by melt spinning. As‐spun fibers were subsequently drawn with a CO2 laser‐heated drawing system at different draw ratios and various drawing velocities. On‐line observations of drawing points deciphered two drawing states; namely, flow drawing and neck drawing, over the entire range of drawing. Drawing stress revealed that flow drawing is induced by slight drawing stress under a low draw ratio up to 3, and neck drawing is induced by relatively high drawing stress under a higher draw ratio. The effect of drawing stress and drawing velocity on the development of the structure and properties has been characterized through analysis of birefringence, density, WAXD patterns, and tensile, thermal, and dynamic viscoelastic properties. For the neck‐drawn fibers, almost proportional enhancements of crystallinity and molecular orientation with drawing stress were observed. The flow‐drawn fibers have an essentially amorphous structure, and birefringence and density do not always have a linear relation with properties. The fibers drawn at high drawing speed exhibit improved fiber structure and superior mechanical properties. The maximum tensile strength and Young's modulus of PA9‐T drawn fibers were found to be 652 MPa and 5.3 GPa, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 433–444, 2004  相似文献   

2.
Hot‐air drawing method has been applied to poly(ethylene terephthalate) (PET) fibers in order to investigate the effect of strain rate on their microstructure and mechanical properties and produce high‐performance PET fibers. The hot‐air drawing was carried out by blowing hot air controlled at a constant temperature against an as‐spun PET fiber connected to a weight. As the hot air blew against the fibers weighted variously at a flow rate of about 90 ℓ/min, the fibers elongated instantaneously at a strain rate in the range of 2.3–18.7 s−1. The strain rate in the hot‐air drawing increased with increasing drawing temperature and applied tension. When the hot‐air drawing was carried out at a drawing temperature of 220°C under an applied tension of 27.6 MPa, the strain rate was the highest value of 18.7 s−1. A draw ratio, birefringence, crystallite orientation factor, and mechanical properties increased as the strain rate increased. The fiber drawn at the highest stain rate had a birefringence of 0.231, degree of crystallinity of 44%, tensile modulus of 18 GPa, and dynamic storage modulus of 19 GPa at 25°C. The mechanical properties of fiber obtained had almost the same values as those of the zone‐annealed PET fiber reported previously. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1703–1713, 1999  相似文献   

3.
This study presents a novel photothermal drawing of poly(ethylene terephthalate) (PET)/multiwalled carbon nanotube (MWCNT) fibers. The photothermal drawing was carried out using the near infrared laser‐induced photothermal properties of MWCNTs. An uniform fiber surface was obtained from a continuous necking deformation of the undrawn fibers, particularly at a draw ratio of 4 and higher. The breaking stress and modulus of the photothermally drawn PET/MWCNT fibers were significantly enhanced, in comparison to those of hot drawn fibers at the same draw ratio. The enhanced mechanical properties were ascribed to the increased orientation of PET chains and MWCNTs as well as PET crystallinity due to photothermal drawing. In particular, a significantly higher degree of orientation of the MWCNTs along the fiber axis was obtained from photothermal drawing, as shown in polarized Raman spectra measurements. The photothermal drawing in this study has the potential to enhance the mechanical properties of fibers containing MWCNTs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 603–609  相似文献   

4.
Low‐orientation and amorphous poly(ethylene terephthalate) fibers were drawn continuously with heating by carbon dioxide (CO2) laser radiation. The tensile properties were examined in terms of the birefringence and network draw ratio, which was estimated from the strain shift of true stress–strain curves. Two drawing forms, neck drawing with a draw efficiency (the ratio of the network draw ratio to the actual draw ratio) of about unity and flow drawing with a draw efficiency of about zero, were found to be stable in the continuous drawing process. Meanwhile, any draw‐efficiency value between zero and unity could be obtained in the batch‐drawing process. The object whose orientation was estimated by the network draw ratio differed from that estimated by birefringence. Two linear relationships were found, between the network draw ratio and tensile strength and between the birefringence and initial modulus. The true stress at breaking increased with the network draw ratio of the CO2‐laser‐heated drawn fibers, and when the draw ratio exceeded 5.0, it became higher than that for batch‐drawn fibers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2322–2331, 2003  相似文献   

5.
A hot‐air (HA) drawing method was applied to nylon 6 fibers to improve their mechanical properties and to study the effect of the strain rate in the HA drawing on their mechanical properties and microstructure. The HA drawing was carried out by the HA, controlled at a constant temperature, being blown against an original nylon 6 fiber connected to a weight. As the HA blew against the fiber at a flow rate of 90 liter/min, the fiber elongated instantaneously at strain rates ranging from 9.1 to 17.4 s−1. The strain rate in the HA drawing increased with increasing drawing temperature and applied tension. When the HA drawing was carried out at a drawing temperature of 240 °C under an applied tension of 34.6 MPa, the strain rate was at its highest value, 17.4 s−1. The draw ratio, birefringence, crystallite orientation factor, and mechanical properties increased as the strain rate increased. The fiber drawn at the highest strain rate had a birefringence of 0.063, a degree of crystallinity of 47%, and a dynamic storage modulus of 20 GPa at 25 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1137–1145, 2000  相似文献   

6.
Polyethylene (PE) fibers were prepared by ethylene extrusion polymerization with an MCM‐41‐supported titanocene catalyst. The morphological and mechanical properties of these nascent PE fibers were investigated. Three levels of fibrous morphologies were identified in the fiber samples through an extensive scanning electron microscopy study. Extended‐chain PE nanofibrils with diameters of about 60 nm were the major morphological units present in the fiber structure. The nanofibrils were parallel‐packed into individual microfibers with diameters of about 1–30 μm. The microfibers were further aggregated irregularly into fiber aggregates and bundles. In comparison with commercial PE fibers and data reported in the literature, the individual microfibers produced in situ via ethylene extrusion polymerization without posttreatment exhibited a high tensile strength (0.3–1.0 GPa), a low tensile modulus (3.0–7.0 GPa), and a high elongation at break (8.5–20%) at 35 °C. The defects in the alignment of the nanofibrils were believed to be the major reason for the low modulus values. It was also found that a slight tensile drawing could increase the microfiber strength and modulus. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2433–2443, 2003  相似文献   

7.
Structural development of ultra‐high strength polyethylene fibers via hot‐drawing processes of as‐spun gel fibers was investigated by means of transmission electron microscopy. It is found that the shish‐kebabs developed in both the as‐spun and drawn fibers can be transformed continuously into the micro‐fibril structure composed mostly of the shish structure through the hot‐drawing process. The structure transformation involves a drastic decrease in diameter of the kebab plus the shish but almost no change in the shish diameter. This result suggests that the chains in the kebabs are incorporated into the shishs and consumed to extend the longitudinal dimension of the shishs during the drawing process. The proposed new deformation model well explains the relationship between the fiber morphology and their mechanical properties: the tensile strength and modulus of the fibers can be determined by the number of the shish in the fiber and the macroscopic diameter of the fiber, which are apriori determined at the spinning process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1861–1872, 2010  相似文献   

8.
The zone‐drawing (ZD) method was applied three times to the melt‐spun poly(L ‐lactic acid) (PLLA) fibers of low molecular weight (Mv = 13,100) at different temperatures under various tensions. The mechanical properties and superstructure of the ZD fibers were investigated. The resulting ZD‐3 fiber had a draw ratio of 10.5, birefringence of 37.31 × 10−3, and crystallinity of 37%, while an orientation factor of crystallites remarkably increased to 0.985 by the ZD‐1. The Young's modulus and tensile strength of the ZD‐3 fiber respectively attained 9.1 GPa and 275 MPa, and the dynamic storage modulus was 10.4 GPa at room temperature. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 991–996, 1999  相似文献   

9.
The effects of high‐speed melt spinning and spin drawing on the structure and resulting properties of bacterial generated poly(3‐hydroxybutyrate) (PHB) fibers were investigated. The fibers were characterized by their degree of crystallinity by differential scanning calorimetry (DSC) and wide‐angle X‐ray scattering (WAXS), their orientation by WAXS, and the textile physical properties. The WAXS studies revealed that the fibers spun at high speeds and high draw ratios possessed orthorhombic (α modification) and hexagonal (β modification) crystals, the latter as a result of stress‐induced crystallization. The fiber structures formed during these processes were fibril‐like as the atomic force microscopy images demonstrated. The maximum physical break stress, the modulus, and the elongation at break observed in the fibril‐like spin drawn fibers were about 330 MPa, 7.7 GPa, and 37%, respectively. The fibers obtained by a low draw ratio of 4.0 had spherulitic structures and poor textile physical properties. The PHB pellets were analyzed by their degradation during the processes of drying and spinning and by their thermal and rheological properties. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2841–2850, 2000  相似文献   

10.
The structure, mechanical properties, and thermomechanical properties of poly(ethylene terephthalate) (PET) fibers obtained by laser-heated drawing were investigated in terms of their dependence on the draw ratio and feed speed and the differences between neck-drawn fibers and flow-drawn fibers. The long period at a draw ratio of 6.0 reached 19.0 nm, notably larger than at lower ratios, whereas the tilting angle of the laminar structure was constant at about 60°, regardless of the draw ratio. A maximum value of 15.0 GPa was attained for the initial modulus, and 1.07 GPa was attained for the tensile strength. A higher tensile strength orientation-induced crystallized fiber at the same initial modulus was obtained from higher molecular weight PET. The relationship between the compliance and molecular orientation of the amorphous phase was studied with a series model of crystalline and amorphous phases. The results revealed that, in the high-draw-ratio fibers, the compliance of the amorphous phase decreased with the draw ratio at a higher rate than indicated by extrapolation to intrinsic values. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 79–90, 2004  相似文献   

11.
As‐spun poly(ethylene‐2,6‐naphthalate) (PEN) fibers (i.e., precursors) prepared from high molecular weight polymer were drawn and/or annealed under various conditions. Structure and property variations taking place during the treatment process were followed via wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering, differential scanning calorimetry (DSC), and mechanical testing. Both the WAXS and DSC measurements of the cold‐drawn samples stretched from a low‐speed‐spun amorphous fiber indicate that strain‐induced crystallization can occur at a temperature below the glass‐transition temperature and that the resultant crystal is in the α‐form modification. In contrast, when the same precursor was subjected to constrained annealing, its amorphous characteristics remained unchanged even though the annealing was performed at 200 °C. These results may imply that the application of stretching stress is more important than elevated temperatures in producing α‐form crystallization. The crystalline structure of the hot‐drawn samples depends significantly on the morphology of the precursor fibers. When the precursor was wound at a very low speed and in a predominantly amorphous state, hot drawing induced the formation of crystals that were apparently pure α‐form modification. For the β‐form crystallized precursors wound at higher speeds, a partial crystalline transition from the β form to the α form was observed during the hot drawing. In contrast with the mechanical properties of the as‐spun fibers, those of the hot‐drawn products are not improved remarkably because the draw ratio is extremely limited for most as‐spun fibers in which an oriented crystalline structure has already formed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1424–1435, 2000  相似文献   

12.
A continuous zone-drawing/zone-annealing method was applied to poly(ethylene terephthalate) fibers in order to improve their mechanical properties. Apparatus used for this treatment was assembled in our laboratory. The continuous zone-drawing treatment was carried out at a drawing temperature of 103°C under an applied tension of 6.6 MPa to fully orient amorphous chains in the drawing direction without inducing thermal crystallization. The continuous zone-annealing treatment was carried out twice at an annealing temperature of 160°C under 102.2 MPa and at 183°C under 161.1 MPa to crystallize the highly oriented amorphous chains. The fiber was continuously drawn and annealed at a rate of 420 mm/min. The fiber obtained had a birefringence of 0.260, a degree of crystallinity of 55%, a tensile modulus of 18 GPa, and a storage modulus of 21 GPa at 25°C. Despite the large difference in the treating speed between the continuous zone-annealing and zone-annealing, their values are approximately equal to those of the zone-annealed PET fiber that was reported previously. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 473–481, 1998  相似文献   

13.
Nylon‐6/poly(ethylene terephthalate) (PET) ultra‐multi‐island sea–island conjugated melt‐spun fibers are flow‐drawn at a draw ratio of 174 with heating by CO2 laser irradiation. Continuous PET nanofibers that have a diameter of 39 nm could be obtained from the flow‐drawn fiber with further drawing and removal of the sea component. In addition, the drawn fiber has a strength of 0.54 GPa. This result shows that a PET nanofiber having a strength almost equal to that of a conventional PET fiber can be obtained by the combination of conjugate‐melt‐spinning and laser‐heated flow‐drawing.

  相似文献   


14.
The transverse and longitudinal mechanical properties of aramid fibers like Kevlar? 29 (K29) fibers are strongly linked to their highly oriented structure. Mechanical characterization at the single fiber scale is challenging especially when the diameter is as small as 15 µm. Longitudinal tensile tests on single K29 fibers and single fiber transverse compression test (SFTCT) have been developed. Our approach consists of coupling morphological observations and mechanical experiments with SFTCT analysis by comparing analytical solutions and finite element modeling. New insights on the analysis of the transverse direction response are highlighted. Systematic loading/unloading compression tests enable to experimentally determine a transverse elastic limit. Taking account of the strong anisotropy of the fiber, the transverse mechanical response sheds light on a skin/core architecture. More importantly, results suggest that the skin of the fiber, typically representing a shell of one micrometer in thickness, has a transverse apparent modulus of 0.2 GPa. That is around more than fifteen times lower than the transverse modulus of 3.0 GPa in the core. By comparison, the measured longitudinal modulus is about 84 GPa. The stress distribution in the fiber is explored and the critical areas for damage initiation are discussed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 374–384  相似文献   

15.
The concept of the drawing of a molecular network has been employed to derive a total network draw ratio from the combination of the two deformations occurring in the production of poly(butylene terephthalate), PBT, fibers by the consecutive processes of melt spinning and cold drawing. The mechanical properties of PBT can then be more readily explained in terms of increases in this total network draw ratio. However, the preorientation and crystallization that occurs in the melt-spinning process can occur at different strain rates and temperatures, depending on the wind up speed employed, on the extensional viscosity of the polymer, and on the variation of the extensional viscosity with temperature. Therefore, for polymers such as poly(butylene terephthalate), which can exist in two crystalline forms, the morphology of the final drawn fiber might be expected to depend on the first melt-spinning stage of the process as well as on the total network draw ratio. In this work, density, birefringence, mechanical measurements, and WAXD measurements, which have been made on the melt-spun fibers and on the drawn fibers, are described. Small differences in some of the drawn yarn mechanical properties at the same overall network draw ratio are related to the crystallinity and in particular to differences in the proportion of the α and β phases present in the drawn yarn. These in turn are related to differences in the temperature and stress during melt spinning and drawing. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2465–2481, 1997  相似文献   

16.
A high‐tension annealing (HTA) method has been applied to zone‐annealed poly(ethylene‐2,6‐naphthalate) (PEN) fibers in order to further improve their mechanical properties. The HTA treatment was carried out under an applied tension of 428 MPa at a treating temperature of 175 °C. The applied tension was close to the tensile strength at 175 °C. The resulting HTA fiber had a birefringence of 0.492 and degree of crystallinity of 57%. Wide‐angle X‐ray diffraction (WAXD) photographs of the HTA fibers showed three reflections (010, 100, and 1 10) attributed to an α form crystal, but no (020) reflection attributed to a β form was observed in the equator. The tensile modulus and tensile strength increased with processing, and the HTA fiber had a maximum modulus of 33 GPa, a tensile strength of 1.1 GPa, and a storage modulus of 33 GPa at 25 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 61–67, 2000  相似文献   

17.
The initial stage of fiber structure development in the continuous neck‐drawing of amorphous poly(ethylene terephthalate) fibers was analyzed by in situ wide‐angle X‐ray diffraction, small‐angle X‐ray scattering, and fiber temperature measurements. The time error of the measurements (<600 μs) was obtained by synchrotron X‐ray source and laser irradiation heating. A highly ordered fibrillar‐shaped two‐dimensional (smectic‐like) structure was found to be formed less than 1 ms after necking. By analyzing its (001′) and (002′) diffractions, the length of the structure 60–70 nm were obtained. A three‐dimensionally ordered triclinic crystal began to form with the vanishing of the structure around 1 ms after necking. The amount and size of the crystal were almost saturated within several milliseconds of necking, during which time a mainly exothermic heat of crystallization was also observed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2126–2142, 2008  相似文献   

18.
The drawing behavior of the ultra‐high molecular weight polyethylene (UHMW‐PE) melts has been studied by comparing the stress/strain curves for two types of samples as polymerized using conventional Ziegler and newer metallocene catalyst systems. Two UHMW‐PE samples, having the same viscosity average molecular weight of 3.3 × 106, but different molecular weight distribution, have been drawn from melt at special conditions. The sample films for drawing were prepared by compression molding of reactor powders at 180°C in the melt. Differences in the structural changes during drawing and resultant properties, ascribable to their broad or narrow molecular weight distribution, were estimated from tensile tests, SEM observations, X‐ray measurements and thermal analyses. The metallocene‐catalyzed sample having narrower molecular weight distribution, could be effectively drawn from the melt up to a maximum draw ratio (DR) of 20, significantly lower than that obtained for the Ziegler‐catalyzed sample, ∼ 50. The stress/strain curves on drawing were remarkably influenced by draw conditions, including draw temperature and rate. However, the most effective draw for both was achieved at 150°C and a strain rate of 5 min−1, independent of sample molecular weight distribution. The efficiency of drawing, as evaluated by the resultant tensile properties as a function of DR, was higher for the metallocene‐catalyzed sample having narrower molecular weight distribution. Nevertheless, the maximum achieved tensile modulus and strength for the Ziegler sample, 50–55 and 0.90 GPa, respectively, were significantly higher than those for the metallocene sample, 20 and 0.65 GPa, respectively, reflecting the markedly higher drawability for the former than the latter. The stress/strain behavior indicated that the origin of differences during drawing from the melt could be attributed to the ease of chain relaxation for the lower molecular weight chains in the melt. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1921–1930, 1999  相似文献   

19.
This study is concerned with fiber structure of new high‐modulus type PBO fiber. Crystal modulus and molecular orientation change with stress was surveyed. Standard‐modulus type PBO (AS) fiber has hysteresis effect to applied stress while high‐modulus type PBO (HM) fiber shows reversible change. In order to raise actual PBO fiber modulus higher, nonaqueous coagulation process was adopted with conventional heat treatment. The fiber (HM+) so made gives 360 GPa in the Young's modulus and an absence of small‐angle X‐ray scattering pattern that is characteristic for aqueous‐coagulated PBO fiber with heat treatment (Zylon™ HM). The crystal structure form and crystal size for the HM+ fiber are the same as those of the HM fiber. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1605–1611, 2000  相似文献   

20.
The mechanical properties and morphology of multiwall carbon nanotube (MWNT)/polypropylene (PP) nanocomposites were studied as a function of nanotube orientation and concentration. Through melt mixing followed by melt drawing, using a twin screw mini‐extruder with a specially designed winding apparatus, the dispersion and orientation of MWNTs was optimized in PP. Tensile tests showed a 32% increase in toughness for a 0.25 wt % MWNT in PP (over pure PP). Moreover, modulus increased by 138% with 0.25 wt % MWNTs. Transmission electron microscopy and scanning electron microscopy demonstrated qualitative nanotube dispersion and orientation. Wide angle X‐ray diffraction was used to study crystal morphology and orientation by calculating the Herman's orientation factor for the composites as function of nanotube loading and orientation. The addition of nanotubes to oriented samples causes the crystalline morphology to shift from α and mesophase to only α phase. Furthermore, the addition of nanotubes (without orientation) was found to cause isotropization of the PP crystal, and drawing was shown to improve crystal orientation through the orientation factor. In addition, differential scanning caloriometry qualitatively revealed little change in overall crystallinity. In conclusion, this work has shown that melt mixing coupled with melt drawing has yielded MWNT/PP composites with a unique combination of strength and toughness suitable for advanced fiber applications, such as smart fibers and high‐performance fabrics. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 864–878, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号