首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 445 毫秒
1.
The influence of ZnO nanoparticles on the crystalline structures of nylon‐6 under different crystallization conditions (annealing at different temperatures from the amorphous solid, isothermal crystallization from the melt at different temperatures, and crystallization from the solution) has been examined with differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared. ZnO nanoparticles can induce the γ‐crystalline form in nylon‐6 when it is cooled from the melted state and annealed from the amorphous solid. This effect of ZnO nanoparticles increases with decreasing particle size and changes under different crystallization conditions. The effects of ZnO nanoparticles on the crystallization kinetics of nylon‐6 have also been studied with DSC. The results show that ZnO nanoparticles have two competing effects on the crystallization of nylon‐6: inducing the nucleation but retarding the mobility of polymer chains. Finally, the melting behavior of the composites has been investigated with DSC, and the multiple melting peaks of composites containing ZnO nanoparticles and pure nylon‐6 are ascribed to the reorganization of imperfect crystals. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1033–1050, 2003  相似文献   

2.
In the present work, the crystalline structures and the melting behaviors of poly(L ‐lactide) (PLLA) obtained after being annealed at different conditions have been investigated through differential scanning calorimetry and wide‐angle X‐ray diffraction, respectively. To improve the crystallization of PLLA, functionalized multiwalled carbon nanotubes (f‐MWCNTs) are introduced into PLLA. Our results show that by prolonging the annealing duration or enhancing the annealing temperature, the degree of crystallinity of PLLA gradually increases. Very important, the addition of f‐MWCNTs promotes the cold‐crystallization of PLLA dramatically even at relatively lower annealing temperature or in shorter annealing duration. Further results show that, whether in neat PLLA or in PLLA/f‐MWCNTs nanocomposite, only α form crystal forms during the annealing process. The glass transition temperature shifts to high temperatures because of the increase of crystallinity. F‐MWCNTs exhibit great heterogeneous nucleation effect for PLLA crystallization through enhancing the nucleation density, leading to homogeneous and tiny spherulites formation in a very short time. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 326–339, 2009  相似文献   

3.
Poly(L ‐lactide) (PLLA)/multiwall carbon nanotube (MWNT) composites were prepared by the solvent‐ultrasonic‐casting method. Only very low concentrations of MWNTs (<0.08 wt %) were added in the composites. Isothermal and nonisothermal crystalline measurements were carried out on PLLA/MWNT composites to investigate the effect of MWNTs on PLLA crystalline behavior. DSC results showed that the incorporation of MWNTs significantly shortened the crystalline induction time and increased the final crystallinity of the composite, which indicated MWNTs have a strong nucleation effect on PLLA even at very low concentrations. The nonisothermal crystallization measurements showed that the MWNTs greatly speed up crystallization during cooling. From isothermal crystallization results, both PLLA and PLLA/MWNT composites samples closely followed a relationship based on Lauritzen‐Hoffman theory, with the regime II to III transition shifting to lower temperature with increasing MWNT concentration. A double melting peak appeared in both nonisothermal and isothermal measurements. The conditions under which it appeared were found to closely depend on the regime II‐III transition temperature obtained from Lauritzen‐Hoffman theory. From the magnitude and position of melting peaks, it is proposed that the double melting peak is caused by a disorder‐order crystal phase transition. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2341–2352, 2009  相似文献   

4.
Biodegradable poly(3‐hydroxybutyrate) (PHB)/functionalized multi‐walled carbon nanotubes (f‐MWNTs) nanocomposite was prepared in this work by solution casting method at 2 wt% f‐MWNTs loading. Scanning electron microscopy and transmission electron microscopy observations indicate a homogeneous distribution of f‐MWNTs in the PHB matrix. Nonisothermal melt crystallization, overall isothermal melt crystallization kinetics, and crystalline morphology of neat PHB and the PHB/f‐MWNTs nanocomposite were studied in detail. It is found that the presence of f‐MWNTs enhances the crystallization of PHB during nonisothermal and isothermal melt crystallization processes in the nanocomposite due to the heterogeneous nucleation effect of f‐MWNTs. Moreover, the incorporation of a small quantity of f‐MWNTs apparently improves the thermal stability of the PHB/f‐MWNTs nanocomposite with respect to neat PHB. Two methods are employed to study the activation energies of thermal degradation for both the neat PHB and the PHB/f‐MWNTs nanocomposite. The activation energy of thermal degradation of the PHB/f‐MWNTs nanocomposite is higher than that of neat PHB. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Biodegradable poly(butylene succinate) (PBSU)/carboxyl‐functionalized multi‐walled carbon nanotubes (f‐MWNTs) nanocomposites were prepared via solution casting method at low f‐MWNTs loadings of 0.5 and 1 wt%, respectively, in this work. Scanning and transmission electron microscopic observations reveal a fine dispersion of f‐MWNTs throughout the PBSU matrix. Non‐isothermal melt crystallization at different cooling rates, isothermal melt crystallization at different crystallization temperatures, spherulitic morphology, and crystal structure of neat PBSU and its nanocomposites were investigated with various techniques in detail. The addition of f‐MWNTs is found to enhance the crystallization of PBSU, apparently in the nanocomposites during both nonisothermal and isothermal melt crystallization, due to the heterogeneous nucleation effect; however, the crystallization mechanism and crystal structure of PBSU remain almost unchanged. Effect of the presence of f‐MWNTs and their loadings on the thermodynamic driving force for nucleation and nucleation activity of PBSU was evaluated quantitatively through two methods. Moreover, it is found that incorporating with 1 wt% f‐MWNTs significantly improves the storage modulus of PBSU in the nanocomposites by about 147% at room temperature as compared with that of neat PBSU. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The miscibility of nylon‐6 with poly(4‐vinylphenol) (PVPh) or poly(1‐hydroxy‐2,6‐methylphenylene) (p‐Cl‐novolac) was studied with differential scanning calorimetry and small‐angle X‐ray scattering techniques. Both PVPh and p‐Cl‐novolac are miscible with nylon‐6 at the molecular level. The presence of the phenolic polymers affects the crystallization of nylon‐6 and suppresses its melting point. PVPh increases the long space order in crystalline nylon‐6 because it increases the thickness of the amorphous layers. In contrast, a small quantity of p‐Cl‐novolac tends to decrease the long space order. It seems that p‐Cl‐novolac distributed in the amorphous regions introduces more order in these regions and makes the amorphous layers thinner. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 841–850, 2001  相似文献   

7.
Differential scanning calorimetry (DSC), polarized optical microscopy, and X‐ray diffraction methods were used to investigate the isothermal crystallization behavior and crystalline structure of poly(?‐caprolactone) (PCL)/multiwalled carbon nanotube (MWNT) composites. PCL/MWNT composites were prepared via the mixing of a PCL polymer solution with carboxylic groups containing multiwalled carbon nanotubes (c‐MWNTs). Both Raman and Fourier transform infrared spectra indicated that carboxylic acid groups formed at both ends and on the sidewalls of the MWNTs. A transmission electron microscopy micrograph showed that c‐MWNTs were well separated and uniformly distributed in the PCL matrix. DSC isothermal results revealed that introducing c‐MWNTs into the PCL structure caused strongly heterogeneous nucleation induced by a change in the crystal growth process. The activation energy of PCL drastically decreased with the presence of 0.25 wt % c‐MWNT in PCL/c‐MWNT composites and then increased with increasing MWNT content. The result indicated that the addition of c‐MWNT to PCL induced heterogeneous nucleation (lower total activation energy) at a lower c‐MWNT content and then reduced the transportation ability of polymer chains during crystallization processes at a higher MWNT content (higher total activation energy). A correlation between the crystallization kinetics, melting behavior, and crystalline structure of PCL/c‐MWNT composites was also discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 598–606, 2006  相似文献   

8.
The non-isothermal crystallization behaviors of multi-walled carbon nanotubes (MWNTs)/polyamide 6 (PA6) composites were investigated by differential scanning calorimetry (DSC). Three methods, namely, Avrami, Ozawa and Mo, were carried out to analyze the non-isothermal crystallization data. The results showed that the MWNTs in PA6 acted as effective nucleation agents. However the crystallization rate of composites obtained was lower than that of the neat PA6. It is indicated that the presence of MWNTs influenced the mechanism of nucleation and the growth of PA6 crystallites.  相似文献   

9.
The nonisothermal crystallization kinetics was investigated by differential scanning calorimetry for the nylon 6/graphene composites prepared by in situ polymerization. The Avrami theory modified by Jeziorny, Ozawa equation, and Mo equation was used to describe the nonisothermal crystallization kinetics. The analysis based on the Avrami theory modified by Jeziorny shows that, at lower cooling rates (at 5, 10, and 20 K/min), the nylon 6/graphene composites have lower crystallization rate than pure nylon 6. However, at higher cooling rates (at 40 K/min), the nylon 6/graphene composites have higher crystallization rate than pure nylon 6. The values of Avrami exponent m and the cooling crystallization function F(T) from Ozawa plots indicate that the mode of the nucleation and growth at initial stage of the nonisothermal crystallization may be as follows: two‐dimensional (2D), then one‐dimensional (1D) for all samples at 5–10 °C/min; three‐dimensional (3D) or complicated than 3D, then 2D and 1D at 10–20 and 20–40 °C/min. The good linearity of the Mo plots indicated that the combined approach could successfully describe the crystallization processes of the nylon 6 and nylon 6/graphene composites. The activation energies (ΔE) of the nylon 6/graphene composites, determined by Kissinger method, were lower than those of pure nylon 6. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1381–1388, 2011  相似文献   

10.
The effect of introducing silver nanoparticles on the rheological properties and dynamic crystallization behavior of nylon‐6 was investigated. The nanocomposites showed slightly higher viscosity than pure nylon‐6 in the low‐frequency range even at an extremely low loading level of the silver particles (0.5–1.0 wt %). The nanoparticles had a more noticeable effect on the storage modulus than on the loss modulus of a nylon‐6 melt and reduced its loss tangent. They increased the crystallization temperature of nylon‐6 by about 14 °C and produced a sharper crystalline peak. The silver nanoparticles promoted the crystallization of nylon‐6, and their effect on the dynamic crystallization of nylon‐6 at 200 °C was more notable at a lower shear rate and at 190 °C at a higher frequency. Nylon‐6 produced large spherulitic crystals, but the nanocomposites showed a grainy structure. In addition, the silver nanoparticles reduced the fraction of the α‐form crystal but increased that of the γ‐form crystal. The nanocomposites crystallized at 190 °C showed a lower melting temperature than nylon‐6 by about 3 °C, whereas the nanocomposites crystallized at 200 °C showed almost the same melting temperature. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 790–799, 2004  相似文献   

11.
The structure of nylon‐6 hybrids with synthetic or natural clays was investigated for melt‐pressed films with Fourier transform infrared spectroscopy, wide‐angle X‐ray diffraction, and differential scanning calorimetry in comparison with the nylon‐6 homopolymer. In contrast to the development of familiar α‐form crystals in plain nylon‐6 film, the hybrid films produced γ‐form crystals when nylon‐6 was conjugated with synthetic mica, whereas the hybridization with natural montmorillonite gave rise to both α‐ and γ‐crystalline modifications. The degree of crystallinity of the nylon‐6 hybrid with synthetic mica was the highest of the three series. Moisture sorption isotherms obtained for these nylon‐6‐based films were all typically sigmoid‐shaped, although the prevalence of a higher crystallinity in the hybrid samples lowered the degree of moisture regain. The sorption behavior was analyzed well in terms of the parameters of a Brunauer–Emmett–Teller multiplayer adsorption model and a Flory–Huggins treatment. It was also observed that the cluster formation of the water adsorbed into the nylon‐6 matrix tended to be restricted by the hybridization with clay. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 479–487, 2002; DOI 10.1002/polb.10106  相似文献   

12.
The well dispersion of functionalized multi‐walled carbon nanotube (f‐MWCNT) in nylon 6 matrix was prepared by solution mixing techniques. The isothermal and nonisothermal crystallization kinetics of nylon 6 and nylon 6/f‐MWCNT nanocomposites were studied by differential scanning calorimetry (DSC), X‐ray diffraction and polarized optical microscopy analysis. DSC isothermal results revealed that the activation energy of nylon 6 extensively decreased by adding 1 wt % f‐MWCNT into nylon 6, suggesting that the addition of small amount of f‐MWCNT probably induces the heterogeneous nucleation. Nevertheless, the addition of more f‐MWCNT into nylon 6 matrix reduced the transportation ability of polymer chains during crystallization process and thus increased the activation energy. The nonisothermal crystallization of nylon 6/f‐MWCNT nanocomposites was also discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 158–169, 2008  相似文献   

13.
The polymorphism behavior in nylon‐11/montmorillonite (MMT) nanocomposite was investigated by wide‐angle X‐ray diffraction (WAXD) and variable‐temperature infrared spectroscopy. The results of WAXD and IR confirmed the presence of the γ‐crystalline form of nylon‐11, which is induced and stabilized by MMT. However, the hydrogen bond in the nanocomposite and its temperature dependence also exhibited some differences from neat nylon‐11. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 253–259, 2004  相似文献   

14.
Glycidyl methacrylate (GMA) functionalized acrylonitrile‐butadiene‐styrene (ABS) copolymers have been prepared via an emulsion polymerization process. The epoxy‐functionalized ABS (e‐ABS) particles were used to toughen nylon‐6. Molau tests and FTIR results showed the reactions between nylon‐6 and e‐ABS have taken place. Scanning electron microscopy (SEM) displayed the compatibilization reaction between epoxy groups of e‐ABS and nylon‐6 chain ends (amine or carboxyl groups), which improve disperse morphology of e‐ABS in the nylon‐6 matrix. The presence of only a small amount of GMA (1 wt %) within the e‐ABS copolymer was sufficient to induce a pronounced improvement of the impact strength of nylon‐6 blends; whereas further increase of the GMA contents in e‐ABS resulted in lower impact strength because of the crosslinking reaction between nylon‐6 and e‐ABS, resulting in agglomeration of the ABS particles. SEM results showed shear yielding of the nylon‐6 matrix and cavitation of rubber particles were the major toughening mechanisms. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2170–2180, 2005  相似文献   

15.
TEM micrographs show that the PA grafts of PS‐g‐PA6 graft copolymers, which are obtained directly by extracting homo‐PA6 out from the homo‐PA6/PS‐g‐PA6 blends, are in the form of wormlike structure. The wormlike PA6 domains can shrink into droplets after annealing at 250 °C for 15 min. The diameter of the droplet determined by TEM and SAXS is in the range of 50–60 nm. This article reports on a unique crystallization behavior of the PA6 grafts in PS‐g‐PA6 graft copolymers. In a DSC cooling scan, PA6 grafts do not crystallize from the melt with a cooling rate of 10 °C/min. However, there is a cold crystallization peak around 65 °C in the subsequent heating scan. This cold crystallization phenomenon, which has not yet been reported in the literature till now, follows well the homogeneous nucleation mechanism and is depressed at relatively slow cooling rates (2 °C/min) or even completely eliminated after annealing within a specific temperature range. It may be caused by the slow diffusion or transport rate of the less flexible PA6 grafts to the crystal fronts when crystallization takes place around its glass transition temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 65–73, 2010  相似文献   

16.
Hydration in a new semiaromatic polyamide, named polyamide 9‐T (PA9‐T), a copolymer of terephthalic acid with n‐ and iso‐nonanediamines, is studied by dynamic viscoelastic analysis under controlled humidity conditions and wide‐angle X‐ray diffraction analysis in comparison with common polyamide nylon 6. The storage modulus of PA9‐T is retained at up to 60 °C with increasing humidity, then dropped with further increases in temperature past 70 °C. The decrease in mechanical properties at 70 °C due to moisture uptake is found to be substantially improved by annealing to develop molecular packing and/or crystallization. In contrast, the storage modulus of very highly crystallized (50% crystallinity) nylon 6 decreases markedly with humidity at low temperatures such as 20 °C. Thus, PA9‐T retains its mechanical properties in humid atmospheres at much higher temperatures than nylon 6. The crystalline X‐ray diffraction peaks for nylon 6 corresponding to (002) + (202) of the α form shift upon absorption of moisture, speculated to be due to the weakening of hydrogen bonds and the subsequent conformational disordering of the chains. Unlike nylon 6, the crystalline peaks of PA9‐T do not shift due to moisture uptake. This is considered to be attributable to that the long aliphatic chain in PA9‐T forms the large hydrophobic domain, rendering PA9‐T less hygroscopic than nylon 6. Additionally, strong hydrogen bonds formed by terephthalamide residues together with a strong stacking force of phenylene groups may also repel water, preventing moisture bind with the amide groups of PA9‐T crystals. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1640–1648, 2005  相似文献   

17.
Exfoliated nylon‐11/layered silicate nanocomposites were prepared via in situ polymerization by dispersing organoclay in 11‐aminoundecanoic acid monomer. The original clay was modified by a novel method with 11‐aminoundecanoic acid. In situ Fourier transform infrared spectroscopy results show that stronger hydrogen bonds exist between nylon‐11 and organoclay than that of between nylon‐11 and original clay. The linear dynamic viscoelasticity of organoclay nanocomposites was investigated. Before taking rheological measurements, the exfoliated and intercalating structures and the thermal properties were characterized using X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis. The results show that the clay was uniformly distributed in nylon‐11 matrix during in situ polymerization of clay with 4 wt % or less. The presence of clay in nylon‐11 matrix increased the crystallization temperature and the thermal stability of nanocomposites prepared. Rheological properties such as storage modulus, loss modulus, and relative viscosity have close relationship with the dispersion favorably compatible with the organically modified clay. Comparing with neat nylon‐11, the nanocomposites show much higher dynamic modulus and stronger shear thinning behavior. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2161–2172, 2006  相似文献   

18.
Multi‐walled carbon nanotubes (MWNTs) were functionalized with a silane coupling agent. The MWNTs were first coated with inorganic silica by a sol‐gel process and then grafted with 3‐methacryloxypropyltrimethoxysilane (3‐MPTS). The effect of raw MWNTs and silane‐functionalized MWNTs on the crystallization behavior of poly(propylene) (PP) was investigated by means of polarized optical microscopy, differential scanning calorimetry, and wide‐angle X‐ray diffraction. Results obtained from isothermal crystallization experiments indicate that 3‐MPTS functionalization affects the crystallization and melting behavior of PP/MWNTs composites remarkably, which can be attributed to the fact that 3‐MPTS functionalization of MWNTs leads to a uniform dispersion of MWNTs in PP matrix resulting in the good nucleating effect of MWNTs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1616–1624, 2007  相似文献   

19.
An exfoliated nanocomposite was prepared by the film‐casting technique from C25A organo‐modified clay and a new biodegradable polyester derived from glycolic acid and 6‐hydroxyhexanonoic acid. This polyester has a sequential monomer distribution and high crystallinity, allowing a detailed study of its isothermal crystallization. The influence of the clay on the crystallization behavior was investigated by optical microscopy, simultaneous SAXS/WAXD synchrotron radiation and FTIR spectroscopy. Primary nucleation and crystal growth rate decreased significantly with the incorporation of nanoparticles. In addition, the overall crystallization rate of the nanocomposite was logically lower than that of the neat polyester. Bulk crystallizations were modeled from FTIR data with the Avrami equation. The results showed spherulite growth geometry and predetermined (heterogeneous) nucleation for both samples. Morphological studies revealed that both the crystal and the amorphous layer thicknesses were influenced by the presence of silicate layers. The overall percentage of crystallinity and the size of crystalline domains decreased with the addition of the highly miscible organoclay. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 33–46, 2010  相似文献   

20.
The morphology, mechanical properties, and dye diffusion of drawn and heat‐set polyamide‐6 (PA6) yarns were examined. Correlations between the microstructure of PA6 yarns and the dye diffusion coefficients and mechanical properties were established. The crystallinity of PA6 yarns was estimated with density and Fourier transform infrared spectroscopy measurements. A decrease in the γ crystallinity and an increase in the γ‐crystallite size with the draw ratio were observed and attributed to the disappearance of small crystallites and an increase in the average γ‐crystallite size population during the deformation process. The scouring treatment increased the total crystallinity, almost entirely as a result of an increase in the α fraction. Thermally induced crystallization involved increases in both crystalline phases (α and γ) and did not involve crystal‐to‐crystal transformation, whereas drawing PA6 yarns involved both crystallization of the amorphous phase in the α form and γ→α transformation. A sharp decrease in the diffusion coefficient with an increasing draw ratio of PA6 yarns was correlated with an increasing amorphous orientation. The influence of thermally induced crystallinity on the diffusion coefficient seemed exceptionally strong. The mechanical properties of PA6 yarns were examined and correlated with structural changes. It was demonstrated that the crystallinity had a direct correlation with the terminal modulus and extension at break, whereas there was no correlation with the initial modulus. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 349–357, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号