首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Superior property enhancements in polymer–clay nanocomposites can be achieved if one can significantly enhance the nanoclay dispersion and polymer–clay interactions. Recent studies have shown that nanoclays can be dispersed in polymers using supercritical carbon dioxide (scCO2). However, there is need for a better understanding of how changing the clay modifier affects the clay dispersability by scCO2 and the resultant nanocomposite rheology. To address this, the polystyrene (PS)/clay nanocomposites with “weak” interaction (Cloisite 93A clay) and “strong” interaction (Cloisite 15A clay) have been prepared using the supercritical CO2 method in the presence of a co‐solvent. Transmission electron microscopy images and small‐angle X‐ray diffraction illustrate that composites using 15A and 93A clays show similar magnitude of reduction in the average tactoid size, and dispersion upon processing with scCO2. When PS and the clays are coprocessed in scCO2, the “dispersion” of clays appears to be independent of modifier or polymer–clay interaction. However, the low‐frequency storage modulus in the scCO2‐processed 15A nanocomposites is two orders of magnitude higher than that of 93A nanocomposites. It is postulated that below percolation (solution blended composites), the strength of polymer–clay interaction is not a significant contributor to rheological enhancement. In the scCO2‐processed nanocomposites the enhanced dispersion passes the percolation threshold and the interactions dictate the reinforcement potential of the clay–polymer–clay network. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 823–831, 2010  相似文献   

2.
PCL/clay nanocomposites were prepared by microwave‐assisted in situ ROP of ε‐caprolactone in the presence of either unmodified clay (Cloisite® Na+) or clay modified by quaternary ammonium cations containing hydroxyl groups (Cloisite 30B). This PCL showed significantly improved monomer conversion and molecular weight compared with that produced by conventional heating. An intercalated structure was observed for the PCL/Cloisite Na+ nanocomposites, while a predominantly exfoliated structure was observed for the PCL/Cloisite 30B nanocomposites. Microwave irradiation proved to be an effective and efficient method for the preparation of PCL/clay nanocomposites.

  相似文献   


3.
The energy-harvesting efficiency of melt processed polyamide 11 (PA11) films and its nanocomposites have been investigated as a function of filler type and content. In the present work, nanoclays have been used as structural modifiers in a PA11 matrix. The nanocomposites were prepared using layered clays, Cloisite 20A, 10A, and Na+, by extrusion process through varying the filler content, 1, 2, 4, and 5?wt.%. The crystalline structure of these nanocomposites has been studied by X-ray diffractometer. It has been demonstrated that layered silicates are not significant for the structural quality of the obtained nanocomposites. Regarding the interlayer peak of different clays, it has also been revealed that Cloisite 20A is partially exfoliated, whereas 10A and Na+ are totally exfoliated in the PA11 matrix. From mechanical and dynamic mechanical analyses, it was found that the addition of layered silicates results in an increase in mechanical properties. The piezoelectric strain coefficient d33 and dielectric constant εR have been measured on polarized films at ambient temperature. Among all the prepared nanocomposites only Cloisite Na+-loaded PA11 nanocomposites showed the best piezoelectric constant. This observation showed that piezoelectric constant not only depends on the crystalline phases but also on the nature of the filler. Cloisite Na+ is more polar than other modified clays and high polarity leads to a better polarization response. A specific method for the quantification of energy vibration recovery has been developed for these nanocomposites. The capabilities of vibrational energy recovery were studied on PA11 loaded with Cloisite Na+.  相似文献   

4.
In this work, preparation and properties of different nanoclays modified by organic amines (octadecyl amine, a primary amine, and hexadecyltrimethylammonium bromide, a tertiary amine) and brominated polyisobutylene‐co‐paramethylstyrene (BIMS)‐clay nanocomposites are reported. The clays and the rubber nanocomposites have been characterized with the help of Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X‐ray diffraction (XRD). The X‐ray diffraction peaks observed in the range of 3 °–10 ° for the modified clays disappear in the rubber nanocomposites. TEM photographs show predominantly exfoliation of the clays in the range of 12 ± 4 nm in the BIMS. In the FTIR spectra of the nanocomposites, there are common peaks of virgin rubber as well as those of the clays. Excellent improvement in mechanical properties like tensile strength, elongation at break, and modulus is observed on incorporation of the nanoclays in the BIMS. Structure‐property correlation in the above nanocomposites is attempted. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4489–4502, 2004  相似文献   

5.
ABS/Clay nanocomposites were prepared using two ABS with different Acrylonitrile (AN) contents and four montmorillonite clays; a natural clay (CNa+) and three modified clays, Cloisites 10A, 20A, and 30B. The composites were prepared in a twin‐screw extruder. Results were analyzed considering the effect of clay and ABS type, on the clay dispersion, intercalation and exfoliation, as well as on the storage modulus and thermal stability of the nanocomposites. XRD and TEM confirm that when using an ABS with higher AN content (ABS2), a better dispersion and intercalation–exfoliation can be obtained. Cloisites 20A and 30B, respectively the one with greater initial intergallery spacing, but lower polarity and with smaller inter‐gallery spacing but greater polarity, produce the ABS nanocomposites with the greater intergallery spacing. Both ABS polymers have similar storage modulus and Tg and in both cases, the modulus increases with the 4 wt % clay. This increase is greater with the modified clays and slightly greater with the ABS2. Tg, from tan δ, increases very little with the 4 wt % clay, but again, this is slightly greater with ABS2. TGA and flammability tests show that the dispersed clay enhances the thermal stability and that the ABS with higher AN content produces a greater increase in fire retardancy. Tests also show that the better thermal stability and fire retardancy is obtained with the Cloisites 20A or 30B. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 190–200, 2008  相似文献   

6.
UV-cured nanocomposites have been prepared through the photopolymerization of the acrylic resin BEMA (Bisphenol A ethoxylate dimethacrylate) added with organophifilic montmorillonites. Two types of commercially available nanoclays namely Cloisite 30B and Cloisite Na+ were further modified with organic compatibilizers (dodecylsuccinic anhydride, octadecylamine, octadecanoic alcohol and octadecanoic acid) in order to increase their basal spacing and improve the dispersion in the acrylic matrix. The modification with the organic compatibilizers determined an increase of the interlayer distance, as revealed by XRD (X-Ray Diffraction) analysis. The different types of the modified nanoclays were then dispersed in BEMA monomer at 5% m/m concentration and UV-cured in order to prepare the nanocomposites. XRD measurements performed on the nanocomposites showed a slight increase of the interlayer distance indicating the formation of intercalated structures. The photopolymerization reaction was monitored through real-time FT-IR (Fourier Transform Infrared Spectroscopy) in order to check any influence of the nanofillers on the cure kinetics. The nanocomposites were investigated by DSC (Differential Scanning Calorimetry) and TG (Thermogravimetric) analyses and compared to the neat UV-cured resin. The presence of the nanofillers did not influence the glass transition temperature (Tg) of the acrylic resin; in addition an increase of the thermal stability in air of the nanocomposites was evidenced through TG analysis.  相似文献   

7.
An 2‐ureido‐4[1H]pyrimidinone (UPy) motif with self‐association capability (through quadruple hydrogen bonds) was successfully anchored onto montmorillonite clay layers. Polymer/clay nanocomposites were prepared by specific hydrogen bonding interactions between surface functionalized silica nanoclays and UPy‐bonded supramolecular poly(ethylene glycol) or poly(?‐caprolactone). The mixed morphologies including intercalated layers with a non‐uniform separation and exfoliated single layers isolated from any stack were determined by combined X‐ray diffraction and transmission electron microscopic measurements. Thermal analyses showed that all nanocomposites had higher decomposition temperatures and thermal stabilities compared with neat polymer. The differential scanning calorimetric data implied that the crystallinity of polymers did not show essential changes upon introduction of organomodified UPy clays. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 650–658  相似文献   

8.
Epoxy/clay nanocomposites are synthesized using clay modified with the organic modifier N,N‐dimethyl benzyl hydrogenated tallow quaternary ammonium salt (Cloisite 10A). The purpose is to investigate the influence of the clay concentration on the nanostructure, mainly on the free‐volume properties and the interfacial interactions, of the epoxy/clay nanocomposite. Nanocomposites having 1, 3, 5 and 7.5 wt. % clay concentrations are prepared using the solvent‐casting method. The dispersion of clay silicate layers and the morphologies of the fractured surfaces in the nanocomposites are studied using X‐ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The observed XRD patterns reveal an exfoliated clay structure in the nanocomposite with the lowest clay concentration (≤1 wt. %). The ortho‐positronium lifetime (τ3), a measure of the free‐volume size, as well as the fractional free volume (fv) are seen to decrease in the nanocomposites as compared to pristine epoxy. The intensity of free positron annihilation (I2), an index of the epoxy–clay interaction, decreases with the addition of clay (1 wt. %) but increases linearly at higher clay concentrations. Positron age‐momentum correlation measurements are also carried out to elucidate the positron/positronium states in pristine epoxy and in the nanocomposites. The results suggest that in the case of the nanocomposite with the studied lowest clay concentration (1 wt. %), free positrons are primarily localized in the epoxy–clay interfaces, whereas at higher clay concentrations, annihilation takes place from the intercalated clay layers.  相似文献   

9.
In this work a commercially available organophilic Montmorillonite (Cloisite 30B) was modified by interaction with different surfactants, namely dodecylsuccinic anhydride (DSA), octadecylamine (ODA), octadecanoic alcohol (ODOH) and octadecanoic acid (ODAc), in order to increase its basal spacing and to achieve a better dispersibility in LDPE. The morphology of the dispersions was investigated through XRD and TEM analyses. Intercalation phenomena were found for all the systems investigated. The thermal properties of the obtained nanocomposites were studied by means of DSC and TGA measurements. No variation of T m and crystallinity of LDPE was found after the addition of the nanoclays (5 mass/mass%). A significant increase of the air thermal stability of LDPE was achieved in the presence of the modified nanoclays.  相似文献   

10.
The compound 2,2-bis[4-(4-maleimidophenoxy phenyl)]propane was prepared by the imidization of bisamic acid of 2,2-bis(4-aminophenoxy phenyl)propane. Various nanoclays were blended with this bismaleimide and thermally cured. The structural characterization of the synthesized materials and the thermal properties of the bismaleimide and their blends were investigated through FTIR, 1H and 13C NMR, differential scanning calorimetry and thermo gravimetric analysis. Among the various clays investigated, Cloisite 15A shows strong influence on the cure exotherm of bismaleimide. Introduction of clay mineral into bismaleimide shifts the onset of curing exotherm to higher temperature and is nearly 40 °C. The thermal stability of the clay loaded cured bismaleimide increases and the presence of clay particles in the cured bismaleimide matrix enhances the char formation.  相似文献   

11.
The effect of organo‐modified clay (Cloisite 93A) on the crystal structure and isothermal crystallization behavior of isotactic polypropylene (iPP) in iPP/clay nanocomposites prepared by latex technology was investigated by wide angle X‐ray diffraction, differential scanning calorimetry and polarized optical microscopy. The X‐ray diffraction results indicated that the higher clay loading promotes the formation of the β‐phase crystallites, as evidenced by the appearance of a new peak corresponding to the (300) reflection of β‐iPP. Analysis of the isothermal crystallization showed that the PP nanocomposite (1% C93A) exhibited higher crystallization rates than the neat PP. The unfilled iPP matrix and nanocomposites clearly shows double melting behavior; the shape of the melting transition progressively changes toward single melting with increasing crystallization temperature. The fold surface free energy (σe) of polymer chains in the nanocomposites was lower than that in the PP latex (PPL). It should be reasonable to treat C93A as a good nucleating agent for the crystallization of PPL, which plays a determinant effect on the reduction in σe during the isothermal crystallization of the nanocomposites. The activation energy, ΔEa, decreased with the incorporation of clay nanoparticles into the matrix, which in turn indicates that the nucleation process is facilitated by the presence of clay. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1927–1938, 2010  相似文献   

12.
Polystyrene (PS)/clay nanocomposites were prepared with two different new intercalation organophilic clays, the phosphonium salt (APP) and the ammonium 4‐(4‐adamantylphenoxy)‐1‐butanamine (APB) salts, by emulsion polymerization technique. X‐ray diffraction and transmission electron microscopy were performed to characterize the layered structures of APB‐ and APP‐treated polymer–clay nanocomposites, and both resulted in exfoliated structures. Molecular weights of PS obtained from these nanocomposites are slightly lower than the virgin PS formed under similar polymerization conditions. Coefficient of thermal expansion showed approximately a 44–55% decrease for APB‐ and APP‐intercalated clay nanocomposites relative to the pure PS. Both Tg and thermal decomposition temperature of the PS component in the nanocomposite are higher than the virgin PS, implying that the presence of clay is able to enhance thermal stabilities of the PS. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1781–1787, 2007  相似文献   

13.
The compatibilization effects provided by ammonium terminated PMMA(PMMA‐t‐NH3+) on monomer casting polyamide6 (MCPA6)/clay(pristine sodium montmorillonite) nanocomposites were studied in this article. PMMA‐t‐NH3+ used in this study was prepared by radical polymerization using 2‐aminoethanethiol hydrochloride as chain transfer agent. MCPA6/clay/PMMA‐t‐NH3+ nanocomposites were prepared by in situ anionic ring‐opening polymerization of ε‐caprolactam. X‐ray diffraction and transmission electron microscopy plus rheological measurement were used to characterize those nanocomposites. The results indicated that PMMA‐t‐NH3+ would be a good compatibilizer for this system. With PMMA‐t‐NH3+ content increasing, a better dispersion of clay was successfully achieved in the MCPA6 matrix. Furthermore, analysis using differential scanning calorimetry indicated that well dispersed clay layers limited the mobility of the MCPA6 molecule chains to crystallize, reduce the crystalline degree, and favor the formation of the γ‐crystalline form of the MCPA6 matrix. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1802–1810, 2008  相似文献   

14.
Trifunctional organosilane‐modified clay was synthesized and used to prepare waterborne trifunctionalsilane‐terminated polyurethane (WSPU)/clay nanocomposite dispersions in this study. Qualitative evidence of the presence of chemically attached silane molecules on clay were confirmed by Fourier transform infrared spectroscopy. The grafted amount and the grafting yield were determined by thermogravimetric analysis and the obtained results were in good agreement with the cation exchange capacity of pristine clay. X‐ray diffraction and transmission electron microscopy examinations indicated that the clay platelets are mostly intercalated or partially exfoliated in the SPU matrix with a d‐spacing of ~2.50 nm. Clay does not influence the location and peak broadness of the glass transition temperature of soft segment as well as hard segment domains in the WSPU/clay films. WSPU/clay dispersion with higher clay content exhibits a marginal increase in the average particle size, but silane modified clay has a pronounced effect compared with Cloisite 20A‐based nanocomposites. In addition, the incorporation of organophilic clay can also enhance the thermal resistance and tensile properties of WSPUs dramatically through the reinforcing effect. The improvement in water and xylene resistance of the silane modified clay nanocomposites proved that trifunctional organosilane can be used as effective modifiers for clays. Storage stability results confirmed that the prepared nanocomposite dispersions were stable. This method provides an efficient way to incorporate silane modified clay in SPU matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2747–2761, 2007  相似文献   

15.
Summary: Biodegradable polymer/clay nanocomposites and/or composites based on poly(ε-polycaprolactone) (PCL) were prepared by conventional melt mixing. Three kinds of clays, organomodified Cloisite 15A and Cloisite 10A with different ammonium cations located in the silicate gallery and unmodified Cloisite with Na cations were used for composites preparation. The degree of dispersion of silicate layers in the matrix was determined by X-ray diffraction and transmission electron microscopy. Oscillatory rheological measurements were used for characterization of the physical network formed by the filler. The presence of intercalated and exfoliated structures were observed for the composites PCL/Cloisite 15A and PCL/Cloisite 10A, indicating that nanocomposite structure was formed. Changes of viscoelastic properties to more solid-like behavior, especially in the low frequency range were explained by formation of silicate network structure, which can be detected by modified Cole-Cole plots.  相似文献   

16.
Waterborne polymer/clay nanocomposites of methyl methacrylate and butyl acrylate have been prepared by miniemulsion polymerization. Two different commercial organically modified clays have been used: Cloisite 15A and Cloisite 30B. Nanocomposites with partially exfoliated structure, observed by wide‐angle X‐ray diffraction (WAXD), small angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM) were obtained by batch miniemulsion polymerization with 2–4 wt.‐% clay and 30% solids content. The mechanical, thermal and permeation properties of the nanocomposites showed a substantial improvement. Furthermore, this approach has allowed the production of stable and coagulum free latex with solids content up to 42 wt.‐% with partially exfoliated structures.

  相似文献   


17.
Poly(styrene‐co‐butyl acrylate) copolymers were prepared by free‐radical random copolymerization of styrene and butyl acrylate in emulsion in the presence of 10% of surface‐modified sodium montmorillonite (Na‐MMT). The objective of this work was to evaluate the impact of the clay organic modifier in terms of its chemical structure, its degree of interaction within the clay galleries surface, and its ability to copolymerize with monomers, on the morphology and properties of the final nanocomposite prepared. Na‐MMT was modified using different organic modifiers, namely: sodium 1‐allyloxy‐2‐hydroxypropyl (Cops), 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS), N‐isopropylacrylamide (NIPA), and sodium 11‐methacryloyloxy‐undecan‐1‐yl sulfate (MET), respectively. The morphology and properties of the nanocomposites obtained were found to be dependant on the clay organic modifier. X‐ray diffraction (XRD) and transmission electron microscopy indicated that, nanocomposites at 10% clay loading with Cops‐, NIPA‐, and MET‐modified clays, yielded intercalated to partially exfoliated structures, whereas AMPS‐modified clay gave a nanocomposite with a fully exfoliated structure. All polymer–clay nanocomposites were found to be more thermally stable than neat poly(S‐co‐BA) as were determined by TGA. However, nanocomposites with intercalated structures exhibited greater thermal stability relative to fully exfoliated ones. Furthermore, nanocomposites with exfoliated structures exhibited higher storage moduli (GI) than partially exfoliated once, whereas intercalated structure showed the lowest GI values. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3619–3628, 2008  相似文献   

18.
Intercalated nanocomposites of modified montmorillonite clays in a glassy epoxy were prepared by crosslinking with commercially available aliphatic diamine curing agents. These materials are shown to have improved Young's modulus but corresponding reductions in ultimate strength and strain to failure. The results were consistent with most particulate‐filled systems. The macroscopic compressive behavior was unchanged, although the failure mechanisms in compression varied from the unmodified samples. The fracture toughness of these materials was investigated and improvements in toughness values of 100% over unmodified resin were demonstrated. The fracture‐surface topology was examined using scanning electron and tapping‐mode atomic force microscopies and shown to be related to the clay morphology of the system. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1137–1146, 2001  相似文献   

19.
Nanocomposite materials composed of poly (ethylene terephthalate) (PET) and montmorillonite (MMT) clays were prepared by in situ polymerization. Samples consisted of PET blended with various quantities of either pristine (Na+‐MMT) or organically modified MMT (A10‐MMT). The morphology and thermal and mechanical properties were evaluated for each sample. TEM micrographs, acquired at a 20 nm resolution, provide direct evidence of exfoliation of the clay particles into the PET matrix and show the effect of the alkyl‐modifier on clay dispersibility. The dispersion of PET/A10‐MMT was greater than that observed for the PET/Na+‐MMT nanocomposites. The greatest degree of exfoliation occurred for PET/A10‐MMT 0.5 wt %. However, PET/Na+‐MMT exhibited higher crystallization temperatures and rates suggesting that Na+‐MMT is a more efficient nucleating agent. Both mechanically and thermally, PET/A10‐MMT nanocomposites exhibited superior properties over pure PET. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1022–1035, 2008  相似文献   

20.
Summary: Three kinds of organoclay, i.e., Cloisite15A® (C15A), Cloisite20A® (C20A), and Cloisite30B® (C30B) were modified with silane to prepare twice functionalized organoclay (TFC). The pristine Cloisite® clays and the TFC were melt compounded with poly(L ‐lactide) (PLLA) and morphology of the composites was observed to elucidate the effects of the d001 gallery distance, the epoxy content of TFC, and the compatibility between the organic ammonium surfactant and PLLA on the degree of exfoliation of the clay layers.

Plots of ITFC/ICloisite versus epoxy content for PLLA composites with (a) Cloisite15A® (C15A), (b) Cloisite20A® (C20A), (c) Cloisite30B® (C30B).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号