首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 641 毫秒
1.
We propose in this work new algorithms associating asymptotic numerical method and meshless discretization (MFS‐MPS: Method of fundamental solutions‐Method of particular solutions) to compute branch solutions of nonlinear Poisson problems. To detect singular points on these branches, geometrical indicator, Padé approximants, and analytical bifurcation indicator are proposed. Numerical applications show the robustness and the effectiveness of the proposed algorithms. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 978–993, 2014  相似文献   

2.
The classical method of fundamental solutions (MFS) has only been used to approximate the solution of homogeneous PDE problems. Coupled with other numerical schemes such as domain integration, dual reciprocity method (with polynomial or radial basis functions interpolation), the MFS can be extended to solve the nonhomogeneous problems. This paper presents an extension of the MFS for the direct approximation of Poisson and nonhomogeneous Helmholtz problems. This can be done by using the fundamental solutions of the associated eigenvalue equations as a basis to approximate the nonhomogeneous term. The particular solution of the PDE can then be evaluated. An advantage of this mesh-free method is that the resolution of both homogeneous and nonhomogeneous equations can be combined in a unified way and it can be used for multiscale problems. Numerical simulations are presented and show the quality of the approximations for several test examples. AMS subject classification 35J25, 65N38, 65R20, 74J20  相似文献   

3.
This paper proposes a meshless method based on coupling the method of fundamental solutions (MFS) with quasi-interpolation for the solution of nonhomogeneous polyharmonic problems. The original problems are transformed to homogeneous problems by subtracting a particular solution of the governing differential equation. The particular solution is approximated by quasi-interpolation and the corresponding homogeneous problem is solved using the MFS. By applying quasi-interpolation, problems connected with interpolation can be avoided. The error analysis and convergence study of this meshless method are given for solving the boundary value problems of nonhomogeneous harmonic and biharmonic equations. Numerical examples are also presented to show the efficiency of the method.  相似文献   

4.
We propose in this article a numerical algorithm based on the combination of the method of fundamental solutions (MFS) and the proper generalized decomposition technique (PGD) to solve time‐dependent heat equation. The MFS is considered as a truly meshless technique well adapted for a wide range of physical problems and the PGD approach can be considered as a reduction technique based on the separated representation of the variable functions. The proposed study relates to a separation between the spatial and temporal coordinates. To show the effectiveness of the proposed algorithm, several examples are presented and compared to the reference results.  相似文献   

5.
In this study a new framework for solving three-dimensional (3D) time fractional diffusion equation with variable-order derivatives is presented. Firstly, a θ-weighted finite difference scheme with second-order accuracy is introduced to perform temporal discretization. Then a meshless generalized finite difference (GFD) scheme is employed for the solutions of remaining problems in the space domain. The proposed scheme is truly meshless and can be used to solve problems defined on an arbitrary domain in three dimensions. Preliminary numerical examples illustrate that the new method proposed here is accurate and efficient for time fractional diffusion equation in three dimensions, particularly when high accuracy is desired.  相似文献   

6.
In this paper, the Trefftz method of fundamental solution (FS), called the method of fundamental solution (MFS), is used for biharmonic equations. The bounds of errors are derived for the MFS with Almansi’s fundamental solutions (denoted as the MAFS) in bounded simply connected domains. The exponential and polynomial convergence rates are obtained from highly and finitely smooth solutions, respectively. The stability analysis of the MAFS is also made for circular domains. Numerical experiments are carried out for both smooth and singularity problems. The numerical results coincide with the theoretical analysis made. When the particular solutions satisfying the biharmonic equation can be found, the method of particular solutions (MPS) is always superior to the MFS and the MAFS, based on numerical examples. However, if such singular particular solutions near the singular points do not exist, the local refinement of collocation nodes and the greedy adaptive techniques can be used for seeking better source points. Based on the computed results, the MFS using the greedy adaptive techniques may provide more accurate solutions for singularity problems. Moreover, the numerical solutions by the MAFS with Almansi’s FS are slightly better in accuracy and stability than those by the traditional MFS. Hence, the MAFS with the AFS is recommended for biharmonic equations due to its simplicity.  相似文献   

7.
We investigate a meshless method for the accurate and non-oscillatory solution of problems associated with two-dimensional Helmholtz-type equations in the presence of boundary singularities. The governing equation and boundary conditions are approximated by the method of fundamental solutions (MFS). It is well known that the existence of boundary singularities affects adversely the accuracy and convergence of standard numerical methods. The solutions to such problems and/or their corresponding derivatives may have unbounded values in the vicinity of the singularity. This difficulty is overcome by subtracting from the original MFS solution the corresponding singular functions, without an appreciable increase in the computational effort and at the same time keeping the same MFS approximation. Four examples for both the Helmholtz and the modified Helmholtz equations are carefully investigated and the numerical results presented show an excellent performance of the approach developed.  相似文献   

8.
Analytical particular solutions of splines and monomials are obtained for problems of thin plate resting on Pasternak foundation under arbitrary loadings, which are governed by a fourth‐order partial differential equation (PDEs). These analytical particular solutions are valuable when the arbitrary loadings are approximated by augmented polyharmonic splines (APS) constructed by splines and monomials. In our derivations, the real coefficient operator in the governing equation is decomposed into two complex coefficient operators whose particular solutions are known in literature. Then, we use the difference trick to recover the analytical particular solutions of the original operator. In addition, we show that the derived particular solution of spline with its first few directional derivatives are bounded as r → 0. This solution procedure may have the potential in obtaining analytical particular solutions of higher order PDEs constructed by products of Helmholtz‐type operators. Furthermore, we demonstrate the usages of these analytical particular solutions by few numerical cases in which the homogeneous solutions are complementarily solved by the method of fundamental solutions (MFS). © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

9.
In this paper, we employ the boundary-only meshfree method to find out numerical solution of the classical Boussinesq equation in one dimension. The proposed method in the current paper is a combination of boundary knot method and meshless analog equation method. The boundary knot technique is an integration free, boundary-only, meshless method which is used to avoid the known disadvantages of the method of fundamental solution. Also, we use the meshless analog equation method to replace the nonlinear governing equation with an equivalent nonhomogeneous linear equation. A predictor-corrector scheme is proposed to solve the resulted differential equation of the collocation. The numerical results and conclusions are obtained for both the ‘good’ and the ‘bad’ Boussinesq equations.  相似文献   

10.
We propose two algorithms involving the relaxation of either the given Dirichlet data or the prescribed Neumann data on the over‐specified boundary in the case of the alternating iterative algorithm of Kozlov et al. (USSR Comput Math Math Phys 31 (1991), 45–52) applied to the Cauchy problem for the two‐dimensional modified Helmholtz equation. The two mixed, well‐posed and direct problems corresponding to every iteration of the numerical procedure are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method. For each direct problem considered, the optimal value of the regularization parameter is selected according to the generalized cross‐validation criterion. The iterative MFS algorithms with relaxation are tested for Cauchy problems associated with the modified Helmholtz equation in two‐dimensional geometries to confirm the numerical convergence, stability, accuracy and computational efficiency of the method. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

11.
The method of approximate particular solutions (MAPS) is used to solve the two‐dimensional Navier–Stokes equations. This method uses particular solutions of a nonhomogeneous Stokes problem, with the multiquadric radial basis function as a nonhomogeneous term, to approximate the velocity and pressure fields. The continuity equation is not explicitly imposed since the used particular solutions are mass conservative. To improve the computational efficiency of the global MAPS, the domain is split into overlapped subdomains where the Schwarz Alternating Algorithm is employed using velocity or traction values from neighboring subdomains as boundary conditions. When imposing only velocity boundary conditions, an extra step is required to find a reference value for the pressure at each subdomain to guarantee continuity of pressure across subdomains. The Stokes lid‐driven cavity flow problem is solved to assess the performance of the Schwarz algorithm in comparison to a finite‐difference‐type localized MAPS. The Kovasznay flow problem is used to validate the proposed numerical scheme. Despite the use of relative coarse nodal distributions, numerical results show excellent agreement with respect to results reported in literature when solving the lid‐driven cavity (up to Re = 10,000) and the backward facing step (at Re = 800) problems. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 777–797, 2015  相似文献   

12.
In this article, an efficient fourth‐order accurate numerical method based on Padé approximation in space and singly diagonally implicit Runge‐Kutta method in time is proposed to solve the time‐dependent one‐dimensional reaction‐diffusion equation. In this scheme, we first approximate the spatial derivative using the second‐order central finite difference then improve it to fourth‐order by applying Padé approximation. A three stage fourth‐order singly diagonally implicit Runge‐Kutta method is then used to solve the resulting system of ordinary differential equations. It is also shown that the scheme is unconditionally stable, and is suitable for stiff problems. Several numerical examples are solved by the scheme and the efficiency and accuracy of the new scheme are compared with two widely used high‐order compact finite difference methods. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1423–1441, 2011  相似文献   

13.
A simplified transient energy‐transport system for semiconductors subject to mixed Dirichlet–Neumann boundary conditions is analyzed. The model is formally derived from the non‐isothermal hydrodynamic equations in a particular vanishing momentum relaxation limit. It consists of a drift‐diffusion‐type equation for the electron density, involving temperature gradients, a nonlinear heat equation for the electron temperature, and the Poisson equation for the electric potential. The global‐in‐time existence of bounded weak solutions is proved. The proof is based on the Stampacchia truncation method and a careful use of the temperature equation. Under some regularity assumptions on the gradients of the variables, the uniqueness of solutions is shown. Finally, numerical simulations for a ballistic diode in one space dimension illustrate the behavior of the solutions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
We present an explicit sixth‐order compact finite difference scheme for fast high‐accuracy numerical solutions of the two‐dimensional convection diffusion equation with variable coefficients. The sixth‐order scheme is based on the well‐known fourth‐order compact (FOC) scheme, the Richardson extrapolation technique, and an operator interpolation scheme. For a particular implementation, we use multiscale multigrid method to compute the fourth‐order solutions on both the coarse grid and the fine grid. Then, an operator interpolation scheme combined with the Richardson extrapolation technique is used to compute a sixth‐order accurate fine grid solution. We compare the computed accuracy and the implementation cost of the new scheme with the standard nine‐point FOC scheme and Sun–Zhang's sixth‐order method. Two convection diffusion problems are solved numerically to validate our proposed sixth‐order scheme. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

15.
This study deals with obtaining numerical solutions of two-dimensional (2D) fractional cable equation in neuronal dynamics by using a recently introduced meshless method. In solution process at first stage, time derivatives that are appeared in the considered problem are discretized by using finite difference method. Then a meshless method based on hybridization of Gaussian and cubic kernels is developed in local fashion. The problem is solved both on regular and irregular domians. L and RMS error norms are calculated and compared with other numerical methods in literature as well as exact solutions. Also, obtained condition numbers are monitored. Numerical simulations show that local hybrid kernel meshless method is a thriving method for solving 2D fractional cable equation on regular and irregular domians.  相似文献   

16.
对流扩散方程作为偏微分运动方程的分支,在流体力学、气体动力学等领域有着重要应用.为解决对流扩散方程难以通过解析法得到解析解的难题,采用二阶一致3点积分(Quadratically Consistent 3-Point Integration,简称QC3)提高无网格法的计算效率,通过对积分点上形函数导数的修正,改善无网格法的精度和收敛性.本文将QC3无网格法拓展到对流扩散方程问题中,时域离散采用广义特征线Galerkin法,空间离散采用QC3法.数值结果表明,应用QC3无网格法得到的对流扩散问题数值解与解析解十分接近,验证了QC3无网格法解决对流扩散问题的可行性.  相似文献   

17.
A finite‐volume scheme for the stationary unipolar quantum drift‐diffusion equations for semiconductors in several space dimensions is analyzed. The model consists of a fourth‐order elliptic equation for the electron density, coupled to the Poisson equation for the electrostatic potential, with mixed Dirichlet‐Neumann boundary conditions. The numerical scheme is based on a Scharfetter‐Gummel type reformulation of the equations. The existence of a sequence of solutions to the discrete problem and its numerical convergence to a solution to the continuous model are shown. Moreover, some numerical examples in two space dimensions are presented. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1483–1510, 2011  相似文献   

18.
In this paper, the steady‐state Oseen viscous flow equations past a known or unknown obstacle are solved numerically using the method of fundamental solutions (MFS), which is free of meshes, singularities, and numerical integrations. The direct problem is linear and well‐posed, whereas the inverse problem is nonlinear and ill‐posed. For the direct problem, the MFS computations of the fluid flow characteristics (velocity, pressure, drag, and lift coefficients) are in very good agreement with the previously published results obtained using other methods for the Oseen flow past circular and elliptic cylinders, as well as past two circular cylinders. In the inverse obstacle problem the boundary data and the internal measurement of the fluid velocity are minimized using the MATLAB© optimization toolbox lsqnonlin routine. Regularization was found necessary in the case the measured data are contaminated with noise. Numerical results show accurate and stable reconstructions of various star‐shaped obstacles of circular, bean, or peanut cross‐section.  相似文献   

19.
In this paper, an inverse geometric problem for the modified Helmholtz equation arising in heat conduction in a fin is considered. This problem which consists of determining an unknown inner boundary of an annular domain and possibly its surface heat transfer coefficient from one or two pairs of boundary Cauchy data (boundary temperature and heat flux) is solved numerically using the meshless method of fundamental solutions (MFS). A nonlinear unconstrained minimisation of the objective function is regularised when noise is added to the input boundary data. The stability of the numerical results is investigated for several test examples with respect to noise in the input data and various values of the regularisation parameters.  相似文献   

20.
In this paper, the meshless local Petrov–Galerkin approximation is proposed to solve the 2‐D nonlinear Klein–Gordon equation. We used the moving Kriging interpolation instead of the MLS approximation to construct the meshless local Petrov–Galerkin shape functions. These shape functions possess the Kronecker delta function property. The Heaviside step function is used as a test function over the local sub‐domains. Here, no mesh is needed neither for integration of the local weak form nor for construction of the shape functions. So the present method is a truly meshless method. We employ a time‐stepping method to deal with the time derivative and a predictor–corrector scheme to eliminate the nonlinearity. Several examples are performed and compared with analytical solutions and with the results reported in the extant literature to illustrate the accuracy and efficiency of the presented method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号