首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of multilayer polymeric light‐emitting diodes (PLEDs) containing an electron‐transporting layer (ETL), that is tris(8‐quinolinolato)‐aluminum(III) (Alq) and 2,2′,2″‐(1,3,5‐phenylene)‐tris[1‐phenyl‐1H‐benzimidazole] (TPBI), were fabricated by doping fluorescent oligo(p‐phenylene‐vinylene)s (BIII and BV) and polymer derivatives (PBV) into poly(N‐vinyl carbazole) (PVK). These PLEDs can be optimized by the design of multilayer device configurations (brightness increased 8–15 times by addition of ETL) and possess greenish electroluminescent (EL) spectra peaked about 500–540 nm. A remarkably high brightness of 56,935 cd/m2 with a power efficiency of 3.25 lm/W was obtained in the device of PVK:BVOC8‐OC8 (100:20)/Alq (60 nm/60 nm). It suggests that the emission mechanism (including the conjugated and excimer emissions of BVOC8‐OC8 emitters) originates from both of BVOC8‐OC8 and ETL (Alq and TPBI) by varying the concentration of chromophores and adjusting the thickness of ETL. The concentration effect of the emitters in PVK (i.e. PVK:BVOC8‐OC8 = 100:5, 100:20, and 100:100 wt %) and the influence of the ETL (including its thickness) on the EL characteristics are also reported. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2922–2936, 2006  相似文献   

2.
Two new poly(p‐phenylene vinylene) derivatives OX1‐PPV and OX2‐PPV bearing two 1,3,4‐oxadiazole rings per repeat unit and a fully conjugated backbone with solubilizing dodecyloxy side groups were synthesized and investigated. The amorphous conjugated polymers had glass‐transition temperature values of 60–75 °C and emitted intense blue or greenish‐blue light in solution with photoluminescence (PL) emission maxima at 379–492 nm and PL quantum yields of 0.41–0.52. In the solid state they emitted yellowish‐green light with PL emission maxima at 533–555 nm. Cyclic voltammetry showed that both conjugated polymers had reversible reduction and irreversible oxidation, making them n‐type materials. The electron affinity of OX2‐PPV was estimated as 2.85 eV whereas that of OX1‐PPV was 2.75 eV. Yellow electroluminescence (EL) was achieved from single‐layer light‐emitting diodes of OX2‐PPV with an EL emission maximum at 555 nm and a brightness of 70 cd/m2. Polymer OX2‐PPV, which was functionalized with 2,6‐bis(1,3,4‐oxadiazole‐2‐yl)pyridine, demonstrated sensitivity to various metal ions as a fluorescence‐mode chemosensor. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2112–2123, 2004  相似文献   

3.
Novel liquid‐crystalline alternating conjugated copolymers [ P(P(6)CN‐alt‐Cz) and P(P(6)CN‐alt‐MeP) ] with phenylene and carbazolylene or phenylene with methyl substitution onto the main chain have been synthesized through palladium‐catalyzed Suzuki coupling reactions. The influence of the incorporation of carbazolylene and the substituted phenylene into the main chain on the thermal, mesomorphic, and luminescent properties has been investigated by Fourier transform infrared spectroscopy, thermogravimetry, differential scanning calorimetry, polarized optical microscopy, ultraviolet–visible spectroscopy, photoluminescence (PL), and cyclic voltammetry. These polymers show highly thermal stability, losing little of their weights when heated to 360 °C. The conjugated copolymers exhibit liquid crystallinity at elevated temperature. The existence of the chromophoric terphenyl core endows the copolymers with high PL and the polymer P(P(6)CN‐alt‐Cz containing carbazolylene unit can emit more pure blue light. All the copolymer films with low band gaps about 2.3–2.4 eV undergo reversible oxidation and reduction processes, significantly lower than the band gap of poly(p‐phenylene). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 434–442, 2010  相似文献   

4.
Two novel poly(p‐phenylene vinylene) polymers, which carried side substituents with cyano groups or 1,3,4‐oxadiazole, were synthesized by Heck coupling. They consisted of alternating conjugated segments and nonconjugated aliphatic spacers. The polymers had moderate molecular weights, were amorphous, and dissolved readily in tetrahydrofuran and halogenated organic solvents. They were stable up to approximately 340 °C in N2 and 290 °C in air, and the anaerobic char yield was around 60% at 800 °C. The polymer with cyano side groups emitted blue light in solutions and thin films with identical photoluminescence (PL) maximum at 450 nm; this supported the idea that chain interactions were hindered even in the solid state. The PL maximum of this polymer in thin films was blueshifted upon annealing at 120 °C, indicating a thermochromic effect as a result of conformational changes in the polymer backbone. The polymer containing side substituents with oxadiazole rings emitted blue light in solutions with a PL maximum at 474 nm and blue‐greenish light in thin films with a PL maximum at 511 nm. The PL quantum yields of the polymers in tetrahydrofuran were 0.13–0.24. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1768–1778, 2004  相似文献   

5.
A novel copolymer, poly(N‐hexyl‐3,7‐phenothiazylene‐1,2‐ethenylene‐2,6‐pyridylene‐1,2‐ethenylene) ( P3 ), containing N‐hexyl‐3,7‐phenothiazylene and 2,6‐pyridylene chromophores was synthesized to investigate the effect of protonation, metal complexation, and chemical oxidation on its absorption and photoluminescence (PL). Poly(N‐hexyl‐3,8‐iminodibenzyl‐1,2‐ethenylene‐1,3‐phenylene‐1,2‐ethenylene) and poly(N‐hexyl‐3,7‐phenothiazylene‐1,2‐ethenylene‐1,3‐phenylene‐1,2‐ethenylene) ( P2 ), consisting of 1,3‐divinylbenzene alternated with N‐hexyl‐3,8‐iminodibenzyl and N‐hexyl‐3,7‐phenothiazylene, respectively, were also prepared for comparison. Electrochemical investigations revealed that P3 exhibited lower band gaps (2.34 eV) due to alternating donor and acceptor conjugated units (push–pull structure). The absorption and PL spectral variations of P3 were easily manipulated by protonation, metal chelation, and chemical oxidation. P3 displayed significant bathochromic shifts when protonated with trifluoroacetic acid in chloroform. The complexation of P3 with Fe3+ led to a significant absorption change and fluorescence quenching, and this implied the coordination of ferric ions with the 2,6‐pyridylene groups in the backbone. Moreover, both phenothiazylene‐containing P2 and P3 showed conspicuous PL quenching with a slight redshift when oxidized with NOBF4. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1272–1284, 2004  相似文献   

6.
A series of conjugated monomers ( 5a‐5d ) with various lateral substituents were symmetrically synthesized by the Sonogashira coupling reaction, in which central aromatic units (i.e. 9,9‐dipropylfluorenes) were linked to 2,2′:6′,2′‐terpyridyl (tpy) units via phenylene/ethynylene fragments. These light‐emitting monomers were further reacted with zinc(II) ions and subsequently anion exchanged to produce supramolecular main‐chain metallo‐polymers ( 6a‐6d ). The formation of polymers 6a‐6d was confirmed by the increased viscosities (up to 1.5–1.83 times) relative to those of their analogous monomers. The results of 1H NMR titration and UV‐Vis spectral titration revealed a detailed complexation process of metallo‐polymers by varying the molar ratios of zinc(II) ions to monomers. After coordination with zinc(II) ions, the luminescent and thermal properties of the polymers were enhanced by the formation of metallo‐supramolecular structures in contrast to their monomer counterparts. PLED devices employing these metallo‐polymers as emitters gave yellow to orange electroluminescence (EL) emissions with turn‐on voltages around 6 V. The maximum power efficiency, external quantum yield, and brightness of the PLED device containing polymer 6c were 0.33 cd A?1 (at 14 V), 1.02%, and 931 cd m?2 (at 14 V), respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3243–3255, 2007  相似文献   

7.
Poly(p‐phenylenebenzobisthiazole) (PBT) is a heterocyclic, aromatic rigid‐rod polymer with a fully conjugated backbone and excellent dimensional, thermo‐oxidative, and solvent stabilities. A PBT polymer with an intrinsic viscosity of 18.0 dL/g was dissolved in methanesulfonic acid or Lewis acid. The PBT solution was spin‐coated and doctor‐bladed for freestanding films or onto an indium tin oxide (ITO) substrate. The acid was removed via coagulation. Scanning electron microscopy determined that the resultant film thicknesses were about 340 and 60 nm for PBT freestanding films and films on the ITO substrate, respectively. X‐ray scattering demonstrated that the freestanding films were in‐plane isotropic without long‐range order. The freestanding films were excited with a He‐Cd laser at 325 nm for photoluminescence (PL) response. PL spectra showed a distinct intensity maximum at 580 nm, regardless of the film‐forming conditions. After the films cooled to 67 K, the PL maximum shifted to 566 nm with enhanced intensity. Aluminum was evaporated onto the monolayer PBT thin film on the ITO substrate as an electron injector for electroluminescence (EL) response. Diodic electric behavior was observed for all monolayer PBT EL devices for the first time. A threshold voltage as low as 4 V was achieved for the monolayer EL devices. In addition, PBT EL spectra were tunable, with a maximum intensity at 570 nm at a bias voltage of 4.5 V changing to 496 nm at 7.5 V (i.e., a blueshift) with greatly increased intensity. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1760–1767, 2002  相似文献   

8.
A novel series of poly(10‐hexyl‐phenothiazine‐S,S‐dioxide‐3,7‐diyl) and poly(9,9′‐dioctyl‐fluorene‐2,7‐diyl‐alt‐10‐hexyl‐3,7‐phenothiazine‐S,S‐dioxide) (PFPTZ‐SS) compounds were synthesized through Ni(0)‐mediated Yamamoto polymerization and Pd(II)‐catalyzed Suzuki polymerization. The synthesized polymers were characterized by 1H NMR spectroscopy and elemental analysis and showed higher glass transition temperatures than that of pristine polyfluorene. In terms of photoluminescence (PL), the PFPTZ‐SS compounds were highly fluorescent with bright blue emissions in the solid state. Light‐emitting devices were fabricated with these polymers in an indium tin oxide/poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate)/polymer/Ca/Al configuration. The electroluminescence (EL) of the copolymers differed from the PL characteristics: the EL device exhibited a redshifted greenish‐blue emission in contrast to the blue emission observed in the PL. Additionally, this unique phenothiazine‐S,S‐dioxide property, triggered by the introduction of an electron‐deficient SO2 unit into the electron‐rich phenothiazine, gave rise to improvements in the brightness, maximum luminescence intensity, and quantum efficiency of the EL devices fabricated with PFPTZ‐SS. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1236–1246, 2007  相似文献   

9.
Two series of poly(2,3‐diphenyl‐1,4‐phenylenevinylene) (DP‐PPV) derivatives containing multiple bulky substituents were synthesized. In the first series, two different groups were incorporated on C‐5,6 positions of the phenylene moiety to increase steric hindrance and to obtain blue‐shifted emissions. In the second series, bulky fluorenyl groups with two hexyl chains on the C‐9 position were introduced on two phenyl pendants to increase the solubility as well as steric hindrance to prevent close packing of the main chain. Polymers with high molecular weights and fine‐tuned electro‐optical properties were obtained by controlling the feed ratio of different monomers during polymerization. The maximum photoluminescent emissions of the thin films are located between 384 and 541 nm. Cyclic voltammetric analysis reveals that the band gaps of these light‐emitting materials are in the range from 2.4 to 3.3 eV. A double‐layer EL device with the configuration of ITO/PEDOT/P4/Ca/Al emitted pure green light with CIE′1931 at (0.24, 0.5). Using copolymer P6 as the emissive layer, the maximum luminescence and current efficiency were both improved when compared with the homopolymer P4. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6738–6749, 2006  相似文献   

10.
A new class of π‐conjugated, skewed H‐shaped oligomers, consisting of biphenyl, phenylene vinylene, and phenylene ethynylene units as the rigid segment, were synthesized via Sonogashira coupling and Wittig reactions. The coil segments of these molecules were composed of poly(ethylene oxide) (PEO) or PEO with lateral methyl groups between the rod and coil segment, respectively. The experimental results revealed that the lateral methyl groups attached to the surface of the rod and coil segments dramatically influenced the self‐assembling behavior of the molecules in the crystalline phase. H‐shaped rod–coil molecules containing a lateral methyl group at the surface of the rod and PEO coil segments self‐assemble into a two‐dimensional columnar or a three‐dimensional body‐centered tetragonal nanostructures in the crystalline phase, whereas molecules lacking a lateral methyl group based on the PEO coil chain self‐organize into lamellar or hexagonal perforated lamellar nanostructures. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 85–92  相似文献   

11.
A novel conjugated poly[(fluorene‐2,7‐vinylene)‐alt‐(1,4‐phenylenevinylene)] derivative 2 with quaternizable tertiary amino groups was synthesized by Heck coupling of a substituted 2,7‐dibromofluorene and 1,4‐dialkoxy‐2,5‐divinylbenzene. The corresponding quaternary ammonium cationic polyelectrolyte 3 was obtained by the treatment of 2 with bromoethane. Both polymers were soluble in common organic solvents, like tetrahydrofuran, chloroform, and dichloromethane. Polymer 3 showed a limited solubility in alcohols and was insoluble in water. Photophysical and electrochemical properties of the resulting polymers were fully investigated. An intensive green photoluminescence (PL) with maxima at 550 and 545 nm was observed from thin films of 2 and 3 polymers, respectively, red‐shifted compared with the PL emission spectra measured in the solution. The electrochemical band gaps were 2.38–2.45 eV. Single‐layer and double‐layer (with poly[3,4‐(ethylenedioxy)thiophene]/poly (styrenesulfonate) (PEDOT:PSS)) light‐emitting devices (LEDs) with ITO and Al electrodes were prepared and studied. They emitted a green light and their electroluminescence (EL) spectra were similar to those of PL thin films. The external EL efficiency was determined to be 0.43 and 0.32% for ITO/PEDOT:PSS/ 2 /Al and ITO/PEDOT:PSS/ 3 /Al LEDs, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1016–1027, 2007  相似文献   

12.
It was demonstrated that a series of copolymers consisting of 1,4‐phenylenevinylene (PV) and 1,4‐phenylene‐1,2‐ethanediyl (PE) units could be prepared from a single monomer, p‐(methoxymethyl)benzyl chloride, via the chemical vapor deposition polymerization (CVDP) method. The composition of the copolymers could be varied simply by altering the monomer activation temperature. The higher the temperature, the lower the content of the PV unit. The photo (PL)‐ and electroluminescence (EL) properties of the copolymers that revealed a blueshift when compared with PPV strongly depend on the amount of the PE units incorporated. The external quantum efficiencies of the electroluminescence devices having the configuration of ITO/PEDOT‐PSS/copolymer/Al‐Li were higher than that of PPV, which can be ascribed to the improved confinement of excitons. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 742–751, 2005  相似文献   

13.
Three novel fluorene‐containing poly(arylene ethynylene)s with amino‐functionalized side groups were synthesized through the Sonogashira reaction. They were poly{9,9‐bis[6′‐(N,N‐diethylamino)hexyl]‐2,7‐fluorenylene ethynylene}‐altco‐{2,5‐bis[3′‐(N,N‐diethylamino)‐1′‐oxapropyl]‐1,4‐phenylene} ( P1 ), poly{9,9‐bis[6′‐(N,N‐diethylamino)hexyl]‐2,7‐fluorenylene ethynylene} ( P2 ), and poly({9,9‐bis[6′‐(N,N‐diethylamino)hexyl]‐2,7‐fluorenylene ethynylene}‐altco‐(1,4‐phenylene)) ( P3 ). Through the postquaternization treatment of P1 – P3 with methyl iodide, we obtained their cationic water‐soluble conjugated polyelectrolytes (WSCPs): P1′ – P3′ . The water solubility was gradually improved from P3′ to P1′ with increasing contents of hydrophilic side chains. After examining the ultraviolet–visible absorption and photoluminescence (PL) spectra, fluorescence lifetimes, and dynamic light scattering data, we propose that with the reduction of the water solubility from P1′ to P3′ , they exhibited a gradually increased degree of aggregation in H2O. The PL quantum yields of P1′ – P3′ in H2O displayed a decreasing tendency consistent with the increased degree of aggregation, suggesting that the pronounced degree of aggregation was an important reason for the low PL quantum yields of WSCPs in H2O. Two structurally analogous water‐soluble trimers of P2′ and P3′ , model compounds 2,7‐bis(9″,9″‐bis{6‴‐[(N,N‐diethyl)‐N‐methylammonium] hexyl}‐2″‐fluorenylethynyl)‐9,9‐bis{6′‐[(N,N‐diethyl)‐N‐methylammonium]hexyl}fluorene hexaiodide and 1,4‐bis(9′,9′‐bis{6″‐[(N,N‐diethyl)‐N‐methylammonium]hexyl}‐2′‐fluorenylethynyl)benzene tetraiodide, were synthesized. The amplified fluorescence quenching of these WSCPs by Fe(CN)64− in H2O was studied by comparison with a corresponding analogous trimer. The effects of aggregation on the fluorescence quenching may be two‐edged in these cases. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5778–5794, 2006  相似文献   

14.
The new blue light polymer, poly(1′,4′‐phenylene‐1″,4″‐[2″‐(2″″‐ethylhexyloxy)]phenylene‐1‴,4‴‐phenylene‐2,5‐oxadiazolyl) (PPEPPO) was synthesized through the Suzuki reaction of diboronic acid, 2‐methoxy‐[5‐(2′‐ethylhexyl)oxy]‐1,4‐benzene diboronic acid (MEHBBA) and dibromide, 2,5‐bis(4′‐bromophenyl)‐1,3,4‐oxadiazole. This polymer was characterized with various spectroscopic methods. The solid PL spectrum of PPEPPO has a maximum peak at 444 nm corresponding to blue light. Blue LED has been fabricated using this polymer as the electroluminescent layer, ITO as the anode, and aluminum as cathode. This device emitted a blue light, with 40 V of turn‐on voltage. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3086–3091, 2000  相似文献   

15.
Two novel copoly(p‐phenylene)s ( P1 – P2 ) containing bipolar groups (12.8 and 6.8 mol %, respectively), directly linked hole transporting triphenylamine and electron transporting aromatic 1,2,4‐triazole, were synthesized to enhance electroluminescence (EL) of poly(p‐phenylene vinylene) (PPV) derivatives. The bipolar groups not only enhance thermal stability but also promote electron affinity and hole affinity of the resulting copoly(p‐phenylene)s. Blending the bipolar copoly‐(p‐phenylene)s ( P1 – P2 ) with PPV derivatives ( d6‐PPV ) as an emitting layer effectively improve the emission efficiency of its electroluminescent devices [indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/polymer blend/Ca (50 nm)/Al (100 nm)]. The maximum luminance and maximum luminance efficiency were significantly enhanced from 310 cd m?2 and 0.03 cd A?1 ( d6‐PPV ‐based device) to 1450 cd m?2 and 0.20 cd A?1 (blend device with d6‐PPV / P1 = 96/4 containing ~0.5 wt % of bipolar groups), respectively. Our results demonstrate the efficacy of the copoly(p‐phenylene)s with bipolar groups in enhancing EL of PPV derivatives. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

16.
Both fully conjugated polymer poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylene vinylene‐alt‐9,10‐anthrylene vinylene] [poly(MEHPV‐AV)] and conjugated/nonconjugated block copolymers poly(alkanedioxy‐2‐methoxy‐1,4‐phenylene‐1,2‐ethenylene‐9,10‐anthrylene‐1,2‐ehthenylene‐3‐methoxy‐1,4‐phenylene)[poly(BFMPx‐AV), (x = 4, 8, and 12)] were synthesized by Horner–Emmons reaction utilizing potassium tert‐butoxide. Of these synthesized polymers poly(BFMP4‐AV) and poly(BFMP8‐AV), which has four and six methylene groups as solubility spacer in the main chain exhibited liquid crystalline to isotropic transition in addition to the two first order transitions. Light‐emitting diode (LED)s made from the organic solvent soluble poly(BFMP12‐AV) as emitting layer showed blue shift in the emission spectrum compared to the one made from fully conjugated poly(MEHPV‐AV). Although poly(BFMP12‐AV) had higher barrier to the electron injection from cathode than poly(MEHPV‐AV), the luminance efficiency of LED made from poly(BFMP12‐AV) was about 25 times higher than the one made from poly(MEHPV‐AV), which had fully conjugated structure. LEDs fabricated by both poly(BFMP12‐AV) and poly(MEHPV‐AV) exhibited Stoke's shift in the range of 155 to 168 nm from the absorption maximum due to the excimer formation between the ground and excited state anthracene groups. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3173–3180, 2000  相似文献   

17.
A series of diblock‐copolymers were synthesized through anionic polymerization of styrene and tert‐butyl methacrylate (tBuA) with different monomer ratios, and analogous block‐copolymeric derivatives (PS‐b‐PAA)s with monofunctional carboxylic acid groups were obtained by further hydrolyzation as hydrogen‐bonded (H‐bonded) proton donors. Via H‐bonded interaction, these diblock‐coplymeric donors (PS‐b‐PAA)s were incorporated with luminescent mono‐pyridyl/bis‐pyridyl acceptors to form single/double H‐bonded supramolecules, that is, H‐bonded side‐chain/cross‐linking copolymers, respectively. The supramolecular architectures formed by donor polymers and light‐emitting acceptors were influenced by the ratio of acid blocks in the diblock copolymeric donors and the type of single/double H‐bonded light‐emitting acceptors. Their thermal and luminescent properties can be adjusted by H‐bonds, and more than 100 nm of red‐shifted photoluminescence (PL) emissions were observed, which depend on the degrees of the H‐bonding interactions. Self‐assembled phenomena of amphiphilic dibolck copolymers and their H‐bonded complexes were confirmed by TEM micrographs, and supramolecular microphase separation of spherical micelle‐like morphology was demonstrated to affect the photophysical properties. Polymer light‐emitting diode (PLED) devices containing H‐bonded complexes showed electroluminescence (EL) emissions of 503–560 nm under turn‐on voltages of 7.5–9.0 V, maximum power efficiencies of 0.23–0.37 cd/A (at 100 mA/cm2), and maximum luminances of 318–519 cd/m2 (around 25 V). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4685–4702, 2009  相似文献   

18.
2,5‐Bis(2‐bromofluorene‐7‐yl)silole was prepared by a modified one‐pot synthesis with a reverse addition procedure, from which novel silole‐containing polyfluorenes with binary random and alternating structures (silole contents between 4.5 and 25% and high Mw up to 509 kDa were successfully synthesized. The well‐defined repeating unit of the alternating copolymer comprises a terfluorene and a silole ring. Optoelectronic properties including UV absorption, electrochemistry, photoluminescence (PL), and electroluminescence (EL) of the copolymers were examined. The different excitation energy transfers from fluorene to silole of the copolymers in solution and in the solid state were compared. The films of the copolymers showed silole‐dominant green emissions with high absolute PL quantum yields up to 83%. EL devices of the copolymers with a configuration of ITO/PEDOT/copolymer/Ba/Al displayed exclusive silole emissions peaked at around 543 nm and the highest EL efficiency was achieved with the alternating copolymer. Using the alternating copolymer and poly(9,9‐dioctylfluorene) as the blend‐type emissive layer, a maximum external quantum efficiency of 1.99% (four times to that of the neat film) was realized, which was a high efficiency so far reported for silole‐containing polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 756–767, 2007  相似文献   

19.
Two new poly(fluorenediylvinylene)s (CV and CF) with coumarin side chains were synthesized via Heck coupling. The coumarin segments were attached to the C‐9 of fluorene through alkyl spacers. The polymers were soluble in common organic solvents such as tetrahydrofuran (THF), chloroform, dichloromethane, and toluene. The photoluminescence (PL), electroluminescence (EL), and electrochemical behavior of these polymers were studied. CV and CF thin films exhibited broad‐band, bluish‐green and orange PL emissions, with maxima at 475 and 585 nm, respectively. These PL maxima were redshifted in comparison with those measured in THF solutions. Aggregate formation played an important role in the solid state. The aggregation was more pronounced in CF thin films than CV thin films. Both polymers oxidized and reduced irreversibly. Light‐emitting devices (LEDs) with indium tin oxide hole‐injecting and aluminum electron‐injecting electrodes were prepared and studied. The LEDs made of CV emitted green light, and the LEDs made of CF exhibited an orange EL emissions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5750–5762, 2006  相似文献   

20.
A series of soluble conjugated copolymers derived from 9,9‐dioctylfluorene (FO) and selenophene (SeH) was synthesized by a palladium‐catalyzed Suzuki coupling reaction with various feed ratios of SeH to FO less than or equal to 50%. The efficient energy transfer from fluorene segments to narrow band‐gap selenophene sites was observed. In comparison with the very well studied copolymer poly(fluorene‐co‐thiophene), poly(9,9‐dioctylfluorene‐co‐selenophene) (PFO‐SeH) shows redshifted photoluminescence (PL) and electroluminescence (EL) emission. PL spectra of the PFO‐SeH copolymers show a significant redshift along with increasing selenophene content in the copolymers and also with increasing polymer concentration in solution. PL quantum efficiency of the selenophene‐containing PFO copolymer is much lower than that of corresponding PFO‐thiophene (Th) copolymers. All these features of PFO‐SeH copolymers can be explained by the difference in aromaticity of selenophene and thiophene heterocycles and the heavy atom effect of Se in comparison with S‐atoms. The device fabricated with PFO‐SeH15 as the emissive layer exhibited high external quantum efficiency (0.51%) at a luminance of 1570 cd/m2. Device performance is limited by electron injection and the strong quenching effect of Se atoms. Devices with PFO‐SeH copolymers blended into PFO homopolymers show significant improvement in device performance. External quantum efficiency as high as 1.7% can be obtained for PFO‐SeH30/PFO blend devices. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 823–836, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号