首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular organic cages as shape-persistent organic molecules with permanent and accessible cavities have attracted a lot of interest because of their importance as host-guest systems. Herein, we report a chiral porous organic cage (POC) CC9 diluted with a polysiloxane OV-1701 to fabricate a CC9-coated capillary column, which was used for the high-resolution gas chromatographic separation of organic compounds, including positional isomers and racemates. On the CC9-coated capillary column, a large number of racemic compounds such as chiral alcohols, esters, ethers and epoxides can be resolved without derivatization. By comparing the chiral recognition ability of the CC9-coated column with the commercially available β-DEX 120 column and the POC CC3-R coated column recently reported by our group, the CC9-coated column offered good resolution during the separation of some racemates, that were not separated using the β-DEX 120 column or POC CC3-R coated column. Therefore, the CC9-coated column can be complementary to the β-DEX 120 column and CC3-R coated column. The results indicated that the CC9-coated column exhibited great potential for application in the separation of positional isomers and enantiomers with great selectivity, high resolution and good reproducibility.  相似文献   

2.
Microporous organic networks (MONs) are a new class of porous materials synthesized via Sonogashira coupling reactions between organic building blocks. Here we report an in situ synthesis approach to fabricate MONs coated capillary column for high resolution GC separation of hydrocarbons. The McReynolds constant evaluation reveals the MONs coated capillary is a non‐polar column. The MONs coated capillary column shows good resolution for GC separation of diverse important industrial hydrocarbons such as linear and branched alkanes, alkylbenzenes, pinene isomers, ethylbenzene and styrene, cyclohexane and benzene. The MONs coated capillary column gave a high column efficiency of 1542 plates per meter for hexane and good precision for replicate separations of the selected hydrocarbons with the RSDs of 0.2–0.3, 1.5–3.1, and 1.9–3.3% for retention time, peak height and peak area, respectively. The MONs coated capillary also offered better resolution than commercial Inert Cap‐1 and Inert Cap‐5 capillary columns for hexane and heptane isomers. These results reveal the potential of MONs as novel stationary phases in GC.  相似文献   

3.
Chiral covalent organic frameworks(CCOFs) featuring chirality, stability, and good porosity have attracted a considerable amount of attention due to their important applications, such as asymmetric catalysis, chiral separation, and chiral recognition. In this study, a β-cyclodextrin(β-CD) covalent organic framework(β-CD-COF) diluted with polysiloxane OV-1701 was explored as a novel chiral stationary phase(CSP) for gas chromatography(GC) separation of racemates. The β-CD-COF coated capillary colu...  相似文献   

4.
以具有单一手性链的三维手性金属-有机骨架材料[Mn3(HCOO)4(D-Cam)] n作为固定相,制备了毛细管手性柱 A(30 m×250 μm i.d.)和柱 B(5 m×75 μm i.d.),用于气相色谱分离. 分别采用扫描电子显微镜和热重分析考察了固定相的涂敷性能和热稳定性. 选用一些外消旋体、 正构烷烃和位置异构体作为测试物用柱B进行了分离,结果表明该固定相对这些有机物具有较好的分离能力.  相似文献   

5.
Metal–organic frameworks (MOFs) have received great attention as stationary phases in chromatographic separation technology because of their unusual properties such as high surface areas, fascinating structures, and excellent chemical and thermal stability. A chiral MOF, [(CH3)2NH2][Cd(bpdc)1.5]·2DMA, possesses a unique chiral nanotube motif built from the covalent linkage of homochiral nanotubes made up of octuple helices. Here, we report the fabrication of a three-dimensional (3D) chiral nanoporous MOF-coated capillary column (2 m long × 75 μm i.d.) for capillary gas chromatographic separation of racemates, Grob’s test mixture, normal alkanes, normal alcohols, and isomers. The MOF-coated capillary column offered good separation efficiency (2,180 plates m?1), which was measured using n-dodecane as the analyte at 120 °C. The relative standard deviations of repeatability for citronellal on MOF-coated capillary column were 0.23 and 2.1 % for retention time and peak area, respectively. The results demonstrated that the capillary column exhibited excellent selectivity and separation ability toward Grob’s test mixture, normal alkanes, normal alcohols and isomers, especially for racemates.  相似文献   

6.
Metal–organic frameworks are promising porous materials. Chiral metal–organic frameworks have attracted considerable attention in controlling enantioselectivity. In this study, a homochiral metal–organic framework [Co2(D‐cam)2(TMDPy)] (D‐cam = d ‐camphorates, TMDPy = 4,4′‐trimethylenedipyridine) with a non‐interpenetrating primitive cubic net has been used as a chiral stationary phase in high‐performance liquid chromatography. It has allowed the successful separation of six positional isomers and six chiral compounds. The good selectivity and baseline separation, or at least 60% valley separation, confirmed its excellent molecular recognition characteristics. The relative standard deviations for the retention time of run‐to‐run and column‐to‐column were less than 1.8 and 3.1%, respectively. These results demonstrate that [Co2(D‐cam)2(TMDPy)] may represent a promising chiral stationary phase for use in high‐performance liquid chromatography.  相似文献   

7.
汤雯淇  孟莎莎  徐铭  古志远 《色谱》2021,39(1):57-68
金属有机骨架材料(MOFs)是一类由有机配体和金属离子(或金属簇)自组装形成的新型多功能材料。MOFs具有孔隙度高、比表面积大、孔径可调、化学和热稳定性高等特点,被广泛应用于吸附、分离、催化等多个领域。近年来,MOFs作为新型气相色谱固定相用于分离异构体受到了广泛关注。与传统无机多孔材料相比,MOFs在结构和功能上展现出高度的可调性,通过合理地选择配体和金属中心,可以设计合成具有不同孔道大小和孔道环境的MOFs,从而分别从热力学和动力学角度优化色谱分离效果,有效提高分离选择性。该文结合MOFs的结构,讨论了MOFs气相色谱固定相分离不同类型分析物的分离机理。分离机理主要包括MOFs孔道的分子筛效应或形状选择性,MOFs不饱和的金属位点与分析物中不同的官能团之间产生的相互作用,分析物与MOFs孔道之间产生的不同范德华力、π-π相互作用和氢键相互作用。此外,MOFs的手性分离可能主要依赖于外消旋体与手性MOFs中手性活性位点之间的相互作用。该文也对不同分析目标物进行了归类,综述了多种MOFs气相色谱固定相对烷烃、二甲苯异构体和乙基甲苯、外消旋体、含氧有机物、环境有机污染物的气相色谱分离效果。最后,该文还对MOFs在该领域的应用进行了总结与展望,旨在为MOFs气相色谱高效分离的研究提供参考。  相似文献   

8.
Homochiral metal–organic framework (MOF) membranes have been recently reported for chiral separations. However, only a few high‐quality homochiral polycrystalline MOF membranes have been fabricated due to the difficulty in crystallization of a chiral MOF layer without defects on porous substrates. Alternatively, mixed matrix membranes (MMMs), which combine potential advantages of MOFs and polymers, have been widely demonstrated for gas separation and water purification. Here we report novel homochiral MOF–polymer MMMs for efficient chiral separation. Homochirality was successfully incorporated into achiral MIL‐53‐NH2 nanocrystals by post‐synthetic modification with amino acids, such as l ‐histidine (l ‐His) and l ‐glutamic acid (l ‐Glu). The MIL‐53‐NH‐l ‐His and MIL‐53‐NH‐l ‐Glu nanocrystals were then embedded into polyethersulfone (PES) matrix to form homochiral MMMs, which exhibited excellent enantioselectivity for racemic 1‐phenylethanol with the highest enantiomeric excess value up to 100 %. This work, as an example, demonstrates the feasibility of fabricating diverse large‐scale homochiral MOF‐based MMMs for chiral separation.  相似文献   

9.
Microporous organic polymers (MOPs) have emerged as a new class of functional porous materials with unique characteristics and potential uses in diverse areas. However, the field of MOPs for gas chromatographic (GC) separations has not been well explored. Herein, a MOP namely KAPs-1 was dynamic coated onto a capillary column for the first time. The fabricated column exhibited a nonpolar nature and the column efficiency for n-dodecane was up to 7769 plates m−1. The KAPs-1 coated column showed high GC separation performance for a series of volatile organic compounds (VOCs) including the challenging ethylbenzene and xylene isomers, which could not be resolved at baseline on the commercial 5% phenyl polysiloxane stationary phase. Moreover, the relative standard deviations for five replicate determinations of the studied analytes were 0.0–0.6%, 0.9–3.2%, 1.1–5.9%, 0.8–3.7% for retention time, peak area, peak height and peak width, respectively. To investigate the interaction between some analytes and the stationary phase, thermodynamic and kinetic parameters were also evaluated. The results of this study show it is very promising to utilize MOPs as stationary phases for capillary GC.  相似文献   

10.
We present here the application of graphene oxide (GO) and reduced graphene oxide (GOOH) sheet as novel stationary phases for open‐tubular CEC (OTCEC) separation based on electrostatic assembly. The inner walls of a bare capillary column was first modified by ionic assembly of poly (diallyldimethylammonium chloride) (PDDA), and then negatively charged GO or GOOH was easily assembled on a positively charged interior walls of the capillary by electrostatic force. Scanning Electron Microscope images showed that GO and GOOH can still maintain sheet‐layer‐like structure when coated onto the capillary via electrostatic assembly. The chromatographic properties of the GO and GOOH coated columns were evaluated via OTCEC separations of various kinds of analytes, including three acid nitrophenol isomers, three basic nitroaniline isomers, and four neutral PAHs. Efficient separations of all the analytes were achieved with optimized buffer pH and organic additive. The reproducibility and stability of the GO or GOOH coated columns were investigated. Our results indicate the capability of application GO or GOOH sheet in OTCEC separation, which can be coated on the inner wall of fused‐silica capillary via electrostatic assembly.  相似文献   

11.
Recently developed MOF surface-coating techniques, the controlled SBU approach (CSA) for the generation of MOF-5, and the use of self-assembled monolayers have been combined to generate a wall-bonded, crosslinked stationary phase for gas chromatographic capillary columns displaying excellent performance in the separation of natural gas components. The chromatographic performance of this new type of column has been compared to the state-of-the-art solution for this separation problem, namely a coated silica column of the porous layer open tubular (PLOT) type. Chromatographic parameters such as separation, resolution, and tailing factors, as well as plate numbers and heights in the case of isothermal operation, have been determined. Kinetic and thermodynamic parameters characterizing the analyte-stationary phase interaction have been determined for various C1-C4 analytes.  相似文献   

12.
Metal–organic frameworks (MOFs) have received great attention as novel media in separation sciences because of their fascinating structures and unusual properties. However, to the best of our knowledge, there has been no attempt to utilize chiral MOFs as stationary phases in capillary electrochromatography (CEC). In this study, a homochiral helical MOF [Zn2(D-Cam)2(4,4′-bpy)]n (D-Cam = D-(+)-camphoric acid, 4,4′-bpy = 4,4′-bipyridine) was explored as the chiral stationary phase in open tubular capillary electrochromatography (OT-CEC) for separation of chiral compounds and isomers. The MOFs coated column has been developed using a simple procedure via MOFs post-coated on the sodium silicate layer. The baseline separations of flavanone and praziquantel were achieved on the MOFs coated column with high resolution of more than 2.10. The influences of pH, organic modifier content and buffer concentration on separation were investigated. Besides, the separations of isomers (nitrophenols and ionones) were evaluated. The relative standard deviations (RSDs) for the retention time of run-to-run, day-to-day and column-to-column were 1.04%, 2.16% and 3.07%, respectively. The results demonstrated that chiral MOFs are promising for enantioseparation in CEC.  相似文献   

13.
A combination of a pressure switching system with multiple columns and photoionization detectors makes possible rapid analysis of a mixture of inorganic gases and hydrocarbons. Hydrocarbons are separated by a narrow bore capillary column. An alumina PLOT column is used for the separation of lower molecular weight hydrocarbons, especially C4 isomers, while a combination of a micro-packed column with Porapak N and a PLOT capillary column with Molecular Sieve 5A is used for the fast separation of inorganic gases. A photoionization detector is a powerful additional tool for organic gas analysis.  相似文献   

14.
Summary Two crown ethers, di(tert-butylbenzo)-propyl-15-crown-5 polysiloxane (PSO-DTB-15C5) and dibenzo-propyl-15-crown-5 polysiloxane (PSO-DB-15C5) have been synthesized and coated onto fused-silica capillary columns. The chromatographic characteristics, including column efficiency, polarity, phase transition temperature, operating temperature range and selectivity, were studied.Excellent selectivity was obtained for the separation of polar position isomers, especially phenol and dinitrotoluene isomers. The separation mechanism is discussed.  相似文献   

15.
16.
Porous materials with well‐defined pore structures have received considerable attention in the past decades due to their unique structures and wide applications. Most porous materials such as zeolites, metal‐organic frameworks, covalent organic frameworks, and porous organic polymers are extended to infinite frameworks or networks by robust covalent or coordination bonds. Porous molecular cages composed of discrete molecules with permanent cavities are an emerging class of porous material and the discrete molecules assemble into solids by weak intermolecular interaction. In comparison to porous extended solids such as metal‐organic frameworks and covalent organic frameworks, porous molecular cage solids are generally soluble in organic solvents thus allowing solution processing, making them more convenient to apply in many fields. This review mainly focuses on the recent advances of application of porous molecular cages (porous organic cages and metal‐organic cages) for enantioselective recognition and separation from 2010 to present, including gas chromatography, capillary electrochromatography, chiral fluorescent recognition, chiral potentiometric sensing, and enantioselective adsorption. Furthermore, the two important family members of porous molecular cages, porous organic cages and metal‐organic cages, are also discussed.  相似文献   

17.
Azulene is an aromatic molecule with interesting properties, most notably a permanent dipole moment of 1.08D. This degree of polarity in the absence of heteroatoms is quite rare and offers potential for use in unique gas chromatographic stationary phases. Here, we report the first examples of azulene-derivatized stationary phases for gas chromatographic separations. Poly(dimethyl/azulenylmethyl) siloxane polymers containing 15 and 35% of an azulene derivative were synthesized, coated on capillary columns, and evaluated. To compare the effects of increased polarity vs. the effects of polarizability, isomeric naphthalene analogues were also prepared, coated, and evaluated. The coated phases displayed efficiencies up to 2700 plates/m. For both azulene and naphthalene columns, retention increased as substitution level increased. The more polarizable naphthalene columns tended to retain analytes more strongly. Columns were also evaluated for the separation of several different mixtures of isomers against a commercial HP-5 column. All azulene and naphthalene columns exhibited separations comparable to the commercial column. The solvation thermodynamic parameters phases were measured, showing an excellent linear relationship and no change in the mechanism of interaction over the temperature range measured.  相似文献   

18.
Seven new functionalized polymerizable ionic liquids were chemically prepared, and later applied for the preparation of polymeric stationary phases in gas chromatography. These coated GC columns, which exhibited good thermal stabilities (240–300 °C) and very high efficiencies (3120–4200 plates/m), have been characterized using the Abraham solvation parameter model. The chromatographic behavior of these polymeric IL columns has been deeply studied observing excellent selectivities in the separation of many organic substances such as alkanes, ketones, alcohols, amines or esters in mixtures of polar and non polar solvents or fragrances. Remarkably, the challenging separation of xylene isomers has been possible using a bis(trifluoromethylsulfonyl)amide based imidazolium IL coated column as a gas chromatography stationary phase.  相似文献   

19.
普青  何宇雨  袁黎明 《色谱》2020,38(4):484-489
手性介孔材料在手性分离、不对称催化、手性传感等领域具有广泛的应用价值。手性有序无机介孔硅是一类介孔结构高度有序、不含有机成分的手性材料。该文采用D-苯丙氨酸为手性源合成手性有序无机介孔硅(COIMS),将其用聚硅氧烷(OV-1701)稀释后用作固定相制备毛细管气相色谱手性柱,并对该手性柱的分离性能进行了考察,8种手性化合物在该手性柱上得到了拆分。COIMS柱对直链烷烃、醇的分离也表现出良好的选择性。该柱还具有分析时间短、在较高温度下测定稳定等优点,其具有开发成高温手性固定相的潜力。  相似文献   

20.
Chiral metal-organic framework coated open tubular columns are used in the high-resolution gas chromatographic separation of chiral compounds. The columns have excellent selectivity and also possess good recognition ability toward a wide range of organic compounds such as alkanes, alcohols, and isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号