首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Three‐dimensional computer models of electrospray ionization sources were constructed in COMSOL Multiphysics? to solve the static electric fields using finite element methods. The magnitude of the electric field strength for onset of electrospray and optimum signal was calculated under various conditions. The modification of the electric field distribution in the ion source by an atmospheric pressure ion lens was also investigated by plotting the equipotential surfaces, electric field lines and trajectories of charged droplets. Both the calculated and the experimental results demonstrate that the changes in the ion signal detected by the mass spectrometer are attributable to the focusing effect of the ion lens when appropriate voltages are applied on the sprayer and ion lens. The optimum signal was found by setting the sprayer voltage from 3000 to 5000 V while scanning the ion lens voltage. The calculated strengths of the electric field at the sprayer tip for optimum signals are similar although the applied voltages at the sprayer and ion lens are significantly different. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A method for adapting widely used CE conditions for the separation of fluorescently labeled carbohydrates to permit online ESI‐MS detection is presented. Reverse polarity separations were performed in bare fused‐silica capillaries with an acidic BGE. Under these conditions, negatively charged 8‐aminopyrene 1,3,6‐trisulfonate‐labeled carbohydrates migrate forward against the EOF, which is towards the capillary inlet. Therefore, the CE‐MS interface must simultaneously back‐fill the capillary, in order to maintain the CE circuit, and provide a stable forward flow at the sprayer tip to support the electrospray process. This was achieved using a junction‐at‐the‐tip interface, which provides a flow of solution to the junction formed by the capillary terminus and the inner wall of the emitter needle tip. Because the flow rate required for this arrangement is much less than in conventional sheath flow interfaces, dilution of the analytes is minimized. Optimized separation conditions permit baseline resolution of glucose oligomers containing up to 15 glucose units, while longer oligomers, up to 33 glucose units, were observed as resolved peaks in the negative ion mode mass spectrum.  相似文献   

3.
Concentration sensitivity is a key performance indicator for analytical techniques including for capillary electrophoresis-mass spectrometry (CE–MS) with electrospray ionization (ESI). In this study, a flow-through microvial interface was used to couple CE with MS and improve the ESI stability and detection sensitivity. By infusing a peptide mixture through the interface into an MS detector at a typical flow rate for CE-MS analysis, the spatial region near the interface was mapped for MS signal intensity. When the sprayer tip was within a 6 × 6.5 × 5 mm region in front of the MS inlet, the ESI was stable with no significant loss of signal intensity for ions with m/z 239. Finite element simulations showed that the average electric field strength at the emitter tip did not change significantly with minor changes in emitter tip location. Experiments were conducted with four different mass spectrometer platforms coupled to CE via the flow-through microvial interface. Key performance indicators, that is, limit of detection (LOD) and linearity of calibration curves were measured for nine amino acids and five peptides. Inter- and intraday reproducibility were also tested. The results were shown to be suitable for quantification when internal standards were used.  相似文献   

4.
Probe electrospray ionization (PESI) uses a sharp solid needle as electrospray emitter. This method was found to be applicable to the analysis of real‐world samples with high concentrations of salts and detergents without sample pretreatment. Since PESI is only applicable to wet samples but not to dry samples, sheath‐flow PESI (SF‐PESI) has been developed. The metal needle was inserted into the fine plastic capillary with a protrusion of 0.1–0.2 mm from the capillary terminus. The solvent was supplied continuously through the capillary. At the lowest position of the probe, solvent flowing out from the capillary makes the sample wet and extracts the analytes from the surface. The extracted analytes were electrosprayed at the highest position of the needle. SF‐PESI was successfully applied to samples such as narcotics, tablets, bill, fruits, potatoes, etc. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Zhao SS  Zhong X  Chen DD 《Electrophoresis》2012,33(8):1322-1330
An atmospheric ion lens incorporated into an electrospray ion source for capillary electrophoresis-mass spectrometry (CE-MS) is found to extend the stable operational regions for both flow rates and electrospray ionization (ESI) voltages. The stable operating conditions for the ESI source with and without the ion lens were characterized. The results showed that the stable operation region was widest when the voltage difference between the sprayer and the ion lens ranges from 2.6 to 2.8 kV, and under these condition, the CE-MS interface can be adapted to a broader range of electroosmotic and modifier flow rates. Modeling of the electric field in the electrospray ion source with the ion lens suggests that the extension of the stable region is attributed to the flatter equipotential surfaces around the sprayer tip and higher electric field strengths in the rest of the interface region.  相似文献   

6.
A computational fluid dynamics (CFD) software package ANSYS Fluent was employed for simulation of ion transport at atmospheric pressure between a nano-electrospray ionization (nano-ESI) emitter and the mass spectrometer (MS) sampling inlet tube inside an improved air amplifier device incorporating a radiofrequency ion funnel. The flow field, electric field and the ion trajectory calculations were carried out in separate steps. Parallelized user-defined functions were written to accommodate the additional static and transient electric fields and the elastic ion-gas collisions with the Monte Carlo hard-sphere simulation abilities within Fluent’s environment. The ion transmission efficiency from a nano-ESI emitter to the MS sampling inlet was evaluated for different air amplifier and ion funnel operating conditions by tracking 250 sample reserpine ions. Results show that the high velocity gas stream and the external electric field cause a rapid acceleration of the ion beam and its dispersion along the centreline of the air amplifier which leads to reduction of the space-charge effect and the beam divergence. The radiofrequency potential applied to the ion funnel contributed to additional ion focusing.  相似文献   

7.
A pulsed dual electrospray ionization source has been developed to generate positive and negative ions for subsequent ion/ion reaction experiments. The two sprayers, typically a nano-electrospray emitter for analytes and an electrospray emitter for reagents, are positioned in a parallel fashion close to the sampling orifice of a triple quadrupole/linear ion trap tandem mass spectrometer (Sciex Q TRAP). The potentials applied to each sprayer are alternately pulsed so that ions of opposite polarity are generated separately in time. Ion/ion reactions take place after ions of each polarity are sequentially injected into a high-pressure linear ion trap, where axial trapping is effected by applying an auxiliary radio frequency voltage to the end lenses. The pulsed dual electrospray source allows optimization of each sprayer and can be readily coupled to any spray interface with no need for instrument modifications, provided the potentials required to transmit the ion polarity of interest can be alternated in synchrony with the emitter potentials. Ion/ion reaction examples such as charge reduction of multiply charged protein ions, charge inversion of peptides ions, and protein-protein complex formation are given to illustrate capabilities of the pulsed dual electrospray source in the study of gas-phase ion/ion chemistry.  相似文献   

8.
A new interface plate was employed in microspray ionization mass spectrometry (μESI-MS) to improve ion transmission from the sprayer into the sampling nozzle of the mass spectrometer at atmospheric pressure. Using a time-of-flight mass spectrometer (TOFMS), a fivefold increase in ion intensity and a sevenfold reduction in method detection limit were observed. The interface plate attenuated the dependence of the ion intensity on the sprayer position. Even when the distance between the sprayer tip and sampling nozzle was 15.0 mm, ion signals were still stronger than when the sprayer tip was positioned 3.0 mm in front of the sampling nozzle with the original interface plate. This enhancement in the performance of μESI-MS was due to the improved shapes of the equipotential lines near the sprayer tip and the long desolvation distance between the sprayer and the sampling nozzle of the MS.  相似文献   

9.
An emitter electrode with an electroactive poly(pyrrole) (PPy) polymer film coating was constructed for use in electrospray ionization mass spectrometry (ESI‐MS). The PPy film acted as a surface‐attached redox buffer limiting the interfacial potential of the emitter electrode. While extensive oxidation of selected analytes (reserpine and amodiaquine) was observed in positive ion mode ESI using a bare metal (gold) emitter electrode, the oxidation was suppressed for these same analytes when using the PPy‐coated electrode. A semi‐quantitative relationship between the rate of oxidation observed and the interfacial potential of the emitter electrode was shown. The redox buffer capacity, and therefore the lifetime of the redox buffering effect, correlated with the oxidation potential of the analyte and with the magnitude of the film charge capacity. Online reduction of the PPy polymer layer using negative ion mode ESI between analyte injections was shown to successfully restore the redox buffering capacity of the polymer film to its initial state. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

10.
We report a simple nanospray sheath‐flow interface for capillary electrophoresis. This interface relies on electrokinetic flow to drive both the separation and the electrospray; no mechanical pump is used for the sheath flow. This system was interfaced with an LCQ mass spectrometer. The best results were observed with a 2‐µm diameter emitter tip and a 1‐mm spacing between the separation capillary tip and the emitter tip. Under these conditions, mass detection limits (3σ) of 100 amol were obtained for insulin receptor fragment 1142‐1153. The separation efficiency exceeded 200,000 plates for this compound. The relative standard deviation generated during continual infusion of a 50 µM solution of angiotensin II was 2% for the total ion count and 3% for the extracted ion count over a 40‐min period. Finally, the interface was also demonstrated for negative ion mode. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A rapid and sensitive LC‐electrospray ionization‐MS method was developed for determining vinorelbine in rat plasma. A 100 µL plasma sample was treated using a protein precipitation procedure and was chromatographed within 4 min using an Inertsil ODS‐3 C18 (2.1 × 50 mm, 5 µm) column. The selected ion monitoring ions [M + H]+ were m/z 779 and m/z 811 for vinorelbine and vinblastine (internal standard), respectively. The method validation showed that the calibration curve for vinorelbine was linear over a concentration range of 1–1000 ng/mL with lower limit of quantification at 1 ng/mL. The method has been successfully applied to pharmacokinetics in rat plasma. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Although being an atmospheric pressure ion source, electrospray ionization (ESI) has rarely been used directly for ambient imaging mass spectrometry because the sample has to be introduced as liquid solution through the capillary. Instead of capillary, probe electrospray ionization (PESI), which has been developed recently, uses a solid needle as the sampling probe, as well as the electrospray emitter, and has been applied not only for liquid solutions but also for the direct sampling on wet samples. Biological tissues are composed of cells that contain 70–90% water, and when the surface is probed by the needle tip, the biological fluid adhering to the needle can be electrosprayed directly or assisted by additional solvent added onto the needle surface. Here, we demonstrate ambient imaging mass spectrometry of mouse brain section using PESI, incorporated with an auxiliary heated capillary sprayer. The solvent vapor generated from the sprayer condensed on the needle tip, re‐dissolving the adhered sample, and at the same time, providing an indirect means for needle cleaning. The histological sections were prepared by fixation using paraformaldehyde, and the spatial analysis was automated by maintaining an equal sampling depth into the sample in addition to raster scan. Phospholipids and galactosylceramides were readily detected from the mouse brain section in the positive ion mode, and were mapped with 60 µm lateral resolution to form mass spectrometric images. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Standard field desorption (FD) ionization is implemented under high vacuum condition. In this paper, non‐vacuum FD is performed under a super‐atmospheric pressure environment using untreated tungsten wires as FD emitter, and the ion source was coupled to a commercial linear ion trap mass spectrometer. The operating pressure of the ion source was 6 bars which was high enough to provide sufficient dielectric strength to the working gas so that the high voltage that was required for FD could be applied to the emitter without occurrence of electrical discharge. Non‐volatile sample deposited on the bare tungsten wire FD emitter was heated by flowing direct current through the emitter. Similar to vacuum FD, the formation of conical protrusion of the liquefied sample layer under the strong electric field was also observed. Using the present ion source, high pressure field‐desorption of polar neutral compounds, organic salts and ionic liquids is demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2–3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5–10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (−4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined.  相似文献   

15.
In this work we describe a micro-electrospray ionization source equipped with an atmospheric pressure external ion shutter. The solenoid-activated shutter prevents the electrospray plume from entering the inlet capillary unless triggered to the 'open' position. When in the 'closed' position, a stable electrospray plume is maintained between the electrospray ionization (ESI) emitter and the electrically isolated face of the shutter. When the shutter is triggered, a 'slice' of ions is allowed to enter the inlet capillary and is subsequently accumulated in an external ion reservoir comprised of a radio frequency only (rf-only) hexapole and a pair of electrostatic elements. Following ion accumulation in the external ion reservoir, intact molecular ions of proteins, oligonucleotides, and noncovalent complexes can be stored for extended intervals (>30 minutes) prior to being transferred to the Fourier transform ion cyclotron resonance (FTICR) trapped ion cell for mass analysis. By introducing reactive gases directly into the external ion reservoir during the storage interval, ion-molecule reactions, such as H/D exchange, can be performed at high effective pressures. This scheme obviates the need for the long reaction times and delays associated with restoring base pressure in the trapped ion cell and allows H/D exchange reactions to be conducted in a fraction of the time required using conventional in-cell exchange approaches. The back face of the shutter arm contains an elastomeric material which can be positioned to seal the inlet to the mass spectrometer resulting in lower base pressure in the ion reservoir and the FTICR cell. Additionally, it is noted that blocking the ESI plume during non-accumulation events results in reduced fouling of the source electrodes and longer times between required source cleaning.  相似文献   

16.
We report the first quantitative assessment of electrosprayed droplet/ion focusing enabled by the use of a voltage-assisted air amplifier between an electrospray ionization emitter and a hybrid linear ion trap Fourier transform ion cyclotron resonance mass spectrometer (ESI-LTQ-FT-ICR-MS). A solution of fluorescent dye was electrosprayed with a stainless steel mesh screen placed in front of the MS inlet capillary acting as a gas-permeable imaging plate for fluorescence spectroscopy. Without use of the air amplifier, no detectable FT-ICR signal was observed, as well as no detectable fluorescence on the screen upon imaging using a fluorescence scanner. When the air amplifier was turned ON while electrospraying the fluorescent dye, FT-ICR mass spectra with high signal to noise ratio were obtained with an average ion injection time of 21 ms for an AGC target value of 5 x 10(5). Imaging of the screen using a fluorescence scanner produced a distinct spot of cross-sectional area approximately 33.5 mm(2) in front of the MS inlet capillary. These experimental results provide direct evidence of aerodynamic focusing of electrosprayed droplets/ions enabled by an air amplifier, resulting in improved electrospray droplet/ion capture efficiency and reduced ion injection time. A second set of experiments was carried out to explore whether the air amplifier assists in desolvation. By electrospraying a mix of quaternary amines, ratios of increasingly hydrophobic molecules were obtained. Observation of the solvophobic effect associated with electrospray ionization resulted in a higher abundance of the hydrophobic molecule. This bias was eliminated when the air amplifier was turned ON and a response indicative of the respective component concentrations of the molecules in the bulk solution was observed.  相似文献   

17.
Wang P  Chen Z  Chang HC 《Electrophoresis》2006,27(20):3964-3970
The work presents the design of an integrated system consisting of a high-pressure electroosmotic (EO) micropump and a microporous monolithic emitter, which together generate a stable and robust electrospray. Both the micropump and electrospray emitter are fabricated using a sol-gel process. Upon application of an electric potential of sufficient amplitude (>2 kV), the pump delivers fluids with an electroosmotically induced high pressure (>1 atm). The same potential is also harnessed to electrostatically generate a stable electrospray at the porous emitter. Electrokinetic coupling between pump and spray produces spray features different from sprays pressurized by independent mechanical pumps. Four typical spray modes, each with different drop sizes and charge-to-mass ratios, are observed and have been characterized. Since the monolith is silica-based, this integrated device can be used for a variety of fluids, especially organic solvents, without the swelling and shrinking problems that are commonly encountered for polymer monoliths. The maximum pressure generated by a 100 microm id monolithic pump is 3 atm at an applied voltage of 5 kV. The flow rate can be adjusted in the range of 100 nL/min to 1 microL/min by changing the voltage. For a given applied voltage across the pump and emitter system, it is seen that there exists one unique flow rate for which flow balance is achieved between the delivery of liquid to the emitter by the pump and the liquid ejection from the emitter. Under such a condition, a stable Taylor cone is obtained. The principles that lead to these results are also discussed.  相似文献   

18.
The coupling of a lab-on-a-chip microfluidic device to a nanoelectrospray ionization mass spectrometer has the potential to automate many routine analytical procedures and produce a powerful analytical tool. However, past coupling strategies have relied on complex manufacturing steps including drilling and etching the device to attach a capillary or building a nanospray emitter directly into the device. This study shows that a nanospray emitter can be easily fabricated using a porous polymer monolith (PPM) at the end of a glass microdevice. These devices are able to obtain a stable electrospray at a variety of flow rates (50-500 nL/min) but optimal results are obtained at lower flow rates (50-100 nL/min) compatible with electroosmotic flow processes. The PPM is photo-patterned so that it can be placed in any position within the channel of the device with no dead volume. The porous character and the hydrophobic nature of the PPM both aid in development of a stable electrospray process. Total ion current traces for the constant infusion of leucine-enkephalin and PPG show relative standard errors as low as 4%, and produce mass spectra with good signal-to-noise (S/N 43) from only 2 fmol of material. In addition, multiple experiments in a given day show good repeatability with variability as low as 13%, and the multiple flow paths inherent in the PPM limit sprayer clogging.  相似文献   

19.
An atmospheric pressure ion lens improves the performance and ease of use of a nebulizer assisted electrospray (ion spray) ion source. The lens is comprised of an oblong-shaped stainless steel ring attached to an external high voltage power supply. The lens is located near the tip of the conductive sprayer, and is maintained at a potential less than that of the sprayer. The ion lens improves the shape of the equipotential lines in the vicinity of the sprayer tip. This lens gives approximately a 2-fold reduction in the signal RSD, a 2-fold increase in the ion signal, an increase in the number of multiply charged ions, and a much broader range of usable sprayer positions.  相似文献   

20.
Luteoloside is a potential anticarcinogenic component isolated from Lonicera japonica, a traditional Chinese medicine (TCM). This study details the development and validation of a sensitive and accurate HPLC‐ESI‐MS/MS method for the quantification of luteoloside in dog plasma. Sample pretreatment includes simple protein precipitation using methanol–acetonitrile (1:1, v/v). A Phenomenex Gemini C18 column (2.0 × 50 mm, i.d., 3.5 µm) was used to separate luteoloside and internal standard by gradient mode with mobile phase consisting of water containing 0.1% formic acid and methanol containing 0.1% formic acid at a flow rate of 0.40 mL/min with a column temperature of 25°C. The detection was performed by positive ion electrospray ionization (ESI) in multiple reaction monitoring mode. The calibration curves were linear (R > 0.995) over the concentration range 1.0–2000 ng/mL and the lower limit of quantification was 1.0 ng/mL. The intra‐day and inter‐day precisions (RSD) were all <15%, accuracies (RE) were within the range of ±15%, and recoveries were between 85.0 and 115%. The validated HPLC‐ESI‐MS/MS method was successfully applied to determine plasma concentrations of luteoloside after intravenous administration of luteoloside at a dose level of 20 mg/kg. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号