首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stellera chamaejasme L. has been used as a traditional Chinese medicine for the treatment of scabies, tinea, stubborn skin ulcers, chronic tracheitis, cancer and tuberculosis. A sensitive and selective ultra‐high liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method was developed and validated for the simultaneous determination of five flavonoids (stelleranol, chamaechromone, neochamaejasmin A, chamaejasmine and isochamaejasmin) of S. chamaejasme L. in rat plasma. Chromatographic separation was accomplished on an Agilent Poroshell 120 EC‐C18 column (2.1 × 100 mm, 2.7 μm) with gradient elution at a flow rate of 0.4 mL/min and the total analysis time was 7 min. The analytes were detected using multiple reaction monitoring in positive ionization mode. The samples were prepared by liquid–liquid extraction with ethyl acetate. The UPLC‐MS/MS method was validated for specificity, linearity, sensitivity, accuracy and precision, recovery, matrix effect and stability. The validated method exhibited good linearity (r ≥ 0.9956), and the lower limits of quantification ranged from 0.51 to 0.64 ng/mL for five flavonoids. The intra‐ and inter‐day precision were both <10.2%, and the accuracy ranged from −11.79 to 9.21%. This method was successfully applied to a pharmacokinetic study of five flavonoids in rats after oral administration of ethyl acetate extract of S. chamaejasme L.  相似文献   

2.
A rapid, selective and sensitive method using UPLC‐MS/MS was first developed and validated for quantitative analysis of koumine in rat plasma. A one‐step protein precipitation with methanol was employed as a sample preparation technique. Plasma samples were separated on an Acquity UPLC BEH C18 column (50 × 2.1 mm, i.d. 1.7 µm) with a gradient mobile phase consisting of methanol with 0.1% (v/v) formic acid and water containing 0.1% (v/v) formic acid at a flow rate of 0.3 mL/min. Detection and quantification were performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via positive eletrospray ionization. Good linearity (r > 0.9997) was achieved using weighted (1/x2) least squares linear regression over a concentration range of 0.025–15 µg/mL with a lower limit of quantification of 0.025 µg/mL for koumine. The intra‐ and inter‐ precisions (relative standard deviation) of the assay at all three quality control samples were 5.6–14.1% with an accuracy (relative error) of 5.0–14.0%, which meets the requirements of the US Food and Drug Administration guidance. This developed method was successfully applied to an in vivo pharmacokinetic study in rats after a single intravenous dose of 20 mg/kg koumine. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A selective, rapid, and sensitive liquid chromatography–tandem mass spectrometry(LC‐MS/MS) method was developed and validated for the determination of letrozole (LTZ) in human plasma, using anastrozole as internal standard (IS). Sample preparation was performed by one‐step protein precipitation with methanol. The analyte and IS were chromatographed on a reversed‐phase YMC‐ODS‐C18 column (2.0 × 100 mm i.d., 3 µm) with a flow rate of 0.3 mL/min. The mobile phase consisted of water containing 0.1% formic acid (v/v) and methanol containing 0.1% formic acid (v/v). The mass spectrometer was operated in selected reaction monitoring mode through electrospray ionization ion mode using the transitions of m/z 286.2 → 217.1 for LTZ and m/z 294.1 → 225.1 for IS, respectively. The method was validated for selectivity, linearity, lower limit of quantitation, precision, accuracy, matrix effects and stability in accordance with the US Food and Drug Administration guidelines. Linear calibration curves were 1.0–60.0 ng/mL. Intra‐ and inter‐batch precision (CV) for LTZ were <9.34%, and the accuracy ranged from 97.43 to 105.17%. This method was successfully used for the analysis of samples from patients treated with LTZ in the dose of 2.5 mg/day. It might be suitable for therapeutic drug monitoring of these patients and contribute to predict the risk of adverse reactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was developed to determine voriconazole in human plasma. Sample preparation was accomplished through a simple one‐step protein precipitation with methanol. Chromatographic separation was carried out on an Acquity UPLC BEH C18 column using an isocratic mobile phase system composed of acetonitrile and water containing 1% formic acid (45:55, v/v) at a flow rate of 0.50 mL/min. Mass spectrometric analysis was performed using a QTrap5500 mass spectrometer coupled with an electrospray ionization source in the positive ion mode. The multiple reaction monitoring transitions of m/z 351.0 → 281.5 and m/z 237.1 → 194.2 were used to quantify voriconazole and carbamazepine (internal standard), respectively. The linearity of this method was found to be within the concentration range of 2.0–1000 ng/mL with a lower limit of quantification of 2.0 ng/mL. Only 1.0 min was needed for an analytical run. This fully validated method was successfully applied to the pharmacokinetic study after oral administration of 200 mg voriconazole to 20 Chinese healthy male volunteers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
In this work, a sensitive and selective ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method for determination of hupehenine in rat plasma was developed and validated. After addition of imperialine as an internal standard (IS), protein precipitation by acetonitrile–methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m/z 416.3 → 98.0 for hupehenine, and m/z 430.3 → 138.2 for IS. Calibration plots were linear throughout the range 2–2000 ng/mL for hupehenine in rat plasma. Mean recoveries of hupehenine in rat plasma ranged from 92.5 to 97.3%. Relative standard deviations of intra‐day and inter‐day precision were both <6%. The accuracy of the method was between 92.7 and 107.4%. The method was successfully applied to a pharmacokinetic study of hupehenine after either oral or intravenous administration. For the first time, the bioavailability of hupehenine was reported as 13.4%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, a sensitive and selective UPLC‐MS/MS method for determination of ardisiacrispin A in rat plasma was developed. Cyasterone used as an internal standard (IS) and protein precipitation by acetonitrile–methanol (9:1, v /v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m /z 1083.5 → 407.1 for ardisiacrispin A and m /z 521.3 → 485.2 for IS. Calibration plots were linear throughout the range 5–2000 ng/mL for ardisiacrispin A in rat plasma. Mean recoveries of ardisiacrispin A in rat plasma ranged from 80.4 to 92.6%. The values of RSD of intra‐ and inter‐day precision were both <11%. The accuracy of the method was between 97.3 and 105.6%. The method was successfully applied to pharmacokinetic study of ardisiacrispin A after intravenous administration in rats.  相似文献   

7.
A sensitive and selective LC‐MS/MS method for the determination of agomelatine in human plasma was developed and validated. After simple liquid–liquid extraction, the analytes were separated on a Zorbax SB‐C18 column (150 × 2.1 mm i.d., 5 µm) with an isocratic mobile phase consisting of 5 mm ammonium acetate solution (containing 0.1% formic acid) and methanol (30:70, v/v) at a flow‐rate of 0.3 mL/min. The MS acquisition was performed in multiple reaction monitoring mode with a positive electrospray ionization source. The mass transitions monitored were m/z 244.1 → 185.3 and m/z 285.2 → 193.2 for agomelatine and internal standard, respectively. The methods were validated for selectivity, carry‐over, matrix effects, calibration curves, accuracy and precision, extraction recoveries, dilution integrity and stability. The validated method was successfully applied to a pharmacokinetic study of agomelatine in Chinese volunteers following a single oral dose of 25 mg agomelatine tablet. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Luteoloside is a potential anticarcinogenic component isolated from Lonicera japonica, a traditional Chinese medicine (TCM). This study details the development and validation of a sensitive and accurate HPLC‐ESI‐MS/MS method for the quantification of luteoloside in dog plasma. Sample pretreatment includes simple protein precipitation using methanol–acetonitrile (1:1, v/v). A Phenomenex Gemini C18 column (2.0 × 50 mm, i.d., 3.5 µm) was used to separate luteoloside and internal standard by gradient mode with mobile phase consisting of water containing 0.1% formic acid and methanol containing 0.1% formic acid at a flow rate of 0.40 mL/min with a column temperature of 25°C. The detection was performed by positive ion electrospray ionization (ESI) in multiple reaction monitoring mode. The calibration curves were linear (R > 0.995) over the concentration range 1.0–2000 ng/mL and the lower limit of quantification was 1.0 ng/mL. The intra‐day and inter‐day precisions (RSD) were all <15%, accuracies (RE) were within the range of ±15%, and recoveries were between 85.0 and 115%. The validated HPLC‐ESI‐MS/MS method was successfully applied to determine plasma concentrations of luteoloside after intravenous administration of luteoloside at a dose level of 20 mg/kg. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A simple and sensitive analytical method based on ultraperformance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) has been developed for determination of moclobemide in human brain cell monolayer as an in vitro model of blood–brain barrier. Brucine was employed as the internal standard. Moclobemide and internal standard were extracted from cell supernatant by ethyl acetate after alkalinizing with sodium hydroxide. The UPLC separation was performed on an Acquity UPLCTM BEH C18 column (50 × 2.1 mm, 1.7 µm, Waters, USA) with a mobile phase consisting of methanol–water (29.5:70.5, v/v); the water in the mobile phase contained 0.05% ammonium acetate and 0.1% formic acid. Detection of the analytes was achieved using positive ion electrospray via multiple reaction monitoring mode. The mass transitions were m/z 269.16 → 182.01 for moclobemide and m/z 395.24 → 324.15 for brucine. The extraction recovery was 83.0–83.4% and the lower limit of quantitation (LLOQ) was 1.0 ng/mL for moclobemide. The method was validated from LLOQ to 1980 ng/mL with a coefficient of determination greater than 0.999. Intra‐ and inter‐day accuracies of the method at three concentrations ranged from 89.1 to 100.9% for moclobemide with precision of 1.1–9.6%. This validated method was successfully applied to bidirectional transport study of moclobemide blood–brain barrier permeability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A rapid, simple and fully validated LC‐MS/MS method was developed and validated for the determination of megestrol acetate in human plasma using tolbutamide as an internal standard (IS) after one‐step liquid–liquid extraction with methyl‐tert‐butyl‐ether. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the transitions m/z 385.5 → 267.1 for megestrol acetate and m/z 271.4 → 155.1 for IS. Chromatographic separation was performed on a YMC Hydrosphere C18 column with an isocratic mobile phase, which consisted of 10 mm ammonium formate buffer (adjusted to pH 5.0 with formic acid)–methanol (60:40, v/v) at a flow rate of 0.4 mL/min. The achieved lower limit of quantitation (LLOQ) was 1 ng/mL (signal‐to‐noise ratio > 10) and the standard calibration curve for megestrol acetate was linear (r > 0.99) over the studied concentration range (1–2000 ng/mL). The proposed method was fully validated by determining its specificity, linearity, LLOQ, intra‐ and inter‐day precision and accuracy, recovery, matrix effect and stability. The validated LC‐MS/MS method was successfully applied for the evaluation of pharmacokinetic parameters of megestrol acetate after oral administration of a single dose 800 mg of megestrol acetate (Megace?) to five healthy Korean male volunteers under fed conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A simple, rapid and sensitive liquid chromatography/positive ion electro‐spray tandem mass spectrometry method (LC‐MS/MS) was developed and validated for the quantification of fexofenadine with 100 μL human plasma employing glipizide as internal standard (IS). Protein precipitation was used in the sample preparation procedure. Chromatographic separation was achieved on a reversed‐phase C18 column (5 μm, 100 × 2.1 mm) with methanol : buffer (containing 10 mmol/L ammonium acetate and 0.1% formic acid; 70 : 30, v/v) as mobile phase. The total chromatographic runtime was approximately 3.0 min with retention time for fexofenadine and IS at approximately 1.9 and 2.1 min, respectively. Detection of fexofenadine and IS was achieved by LC‐MS/MS in positive ion mode using 502.1 → 466.2 and 446.0 → 321.1 transitions, respectively. The method was proved to be accurate and precise at linearity range of 1–600 ng/mL with a correlation coefficient (r) of ≥0.9976. The validated method was applied to a pharmacokinetic study in human volunteers following oral administration of 60 or 120 mg fexofenadine formulations, successfully. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Macitentan is an endothelin receptor antagonist commonly used in the treatment of pulmonary arterial hypertension (PAH). A novel, rapid, simple and sensitive UPLC–MS/MS method was developed and validated for pharmacokinetic study and the determination of macitentan in PAH patients. Macitentan and bosentan, which are used as internal standards, were detected using atmospheric pressure chemical ionization in positive ion and multiple reaction monitoring mode by monitoring the mass transitions m/z 589.1 → 203.3 and 552.6 → 311.5, respectively. Chromatographic separation was performed on a reverse‐phase C18 column (5 μm, 4.6 × 150 mm) with an isocratic mobile phase, which consisted of water containing 0.2% acetic acid–acetonitrile (90:10, v/v) at a flow rate of 1 mL/min. Retention times were 1.97 and 1.72 min for macitentan and IS, respectively. The calibration curve with high correlation coefficient (0.9996) was linear in the range 1–500 ng/mL. The lower limit of quantitation and average recovery values were determined as 1 ng/mL and 89.8%, respectively. This method is the first UPLC–MS/MS method developed and validated for the determination of macitentan from human plasma. The developed analytical method was fully validated for linearity, selectivity, specificity, accuracy, precision, sensitivity, stability, matrix effect and recovery according to US Food and Drug Administration guidelines. The developed method was applied successfully for pharmacokinetic study and the determination of macitentan in PAH patients.  相似文献   

13.
A simple, rapid and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed and validated for the determination of alosetron (ALO) in human plasma. The assay method involved solid‐phase extraction of ALO and ALO 13C‐d3 as internal standard (IS) on a LichroSep DVB‐HL (30 mg, 1 cm3) cartridge. The chromatography was performed on an Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 µm) column using acetonitrile and 2.0 mm ammonium formate, pH 3.0 adjusted with 0.1% formic acid (80:20, v/v) as the mobile phase in an isocratic mode. For quantitative analysis, the multiple reaction monitoring transitions studied were m/z 295.1/201.0 for ALO and m/z 299.1/205.1 for IS in the positive ionization mode. The method was validated over a concentration range of 0.01–10.0 ng/mL for ALO. Post‐column infusion experiment showed no positive or negative peaks in the elution range of the analyte and IS after injection of extracted blank plasma. The extent of ion‐suppression/enhancement, expressed as IS‐normalized matrix factor, varied from 0.96 to 1.04. The assay recovery was within 97–103% for ALO and IS. The method was successfully applied to support a bioequivalence study of 1.0 mg alosetron tablets in 28 healthy Indian male and female subjects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The aim of this study was to develop an analytical method to determine mequitazine in rat plasma and urine. Mequitazine was separated by UPLC–MS/MS equipped with a Kinetex core–shell C18 column (50 × 2.1 mm, 1.7 μm) using 0.1% (v/v) aqueous formic acid and acetonitrile containing 0.1% (v/v) formic acid as a mobile phase by gradient elution at a flow rate of 0.3 mL/min. Quantitation of this analysis was performed on a triple quadrupole mass spectrometer employing electrospray ionization technique operating in multiple reaction monitoring positive ion mode. Mass transitions were m/z 323.3 → 83.1 for mequitazine and 281.3 → 86.3 for imipramine as internal standard. Liquid–liquid extraction with ethyl acetate and protein precipitation with methanol were used for sample extraction. Chromatograms showed that the method had high resolution, sensitivity and selectivity without interference from plasma constituents. Calibration curves for mequitazine in rat plasma and urine were 0.02–200 ng/mL, showing excellent linearity with correlation coefficients (r2) >0.99. Both intra‐ and inter‐day precisions (CV%) were within 4.08% for rat plasma and urine. The accuracies were 99.58–102.03%. The developed analytical method satisfied the criteria of international guidance. It could be successfully applied to pharmacokinetic studies of mequitazine after oral and intravenous administration to rats.  相似文献   

15.
An ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the simultaneous determination of carvedilol and its pharmacologically active metabolite 4′‐hydroxyphenyl carvedilol in human plasma using their deuterated internal standards (IS). Samples were prepared by solid‐phase extraction using 100 μL human plasma. Chromatographic separation of analytes was achieved on UPLC C18 (50 × 2.1 mm, 1.7 µm) column using acetonitrile‐4.0 mm ammonium formate, pH 3.0 adjusted with 0.1% formic acid (78:22, v/v) as the mobile phase. The multiple reaction monitoring transitions for both the analytes and IS were monitored in the positive electrospray ionization mode. The method was validated over a concentration range of 0.05–50 ng/mL for carvedilol and 0.01‐10 ng/mL for 4′‐hydroxyphenyl carvedilol. Intra‐ and inter‐batch precision (% CV) and accuracy for the analytes varied from 0.74 to 3.88 and 96.4 to 103.3% respectively. Matrix effect was assessed by post‐column analyte infusion and by calculation of precision values (coefficient of variation) in the measurement of the slope of calibration curves from eight plasma batches. The assay recovery was within 94–99% for both the analytes and IS. The method was successfully applied to support a bioequivalence study of 12.5 mg carvedilol tablets in 34 healthy subjects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A highly sensitive and rapid ultraperformance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed and validated for simultaneous quantification of the four main bioactive compounds, i.e. baicalin, baicalein, wogonoside and wogonin, in rat plasma after oral administration of Radix Scutellariae extract. Clarithromycin was used as an internal standard (IS). Plasma samples were processed by protein precipitation with methanol. The separation was performed on an Acquity BEH C18 column (100 × 2.1 mm, 1.7 μm) at a flow rate of 0.4 mL/min, using 0.1% formic acid–acetonitrile as mobile phase. The MS/MS ion transit ions monitored were 447.5 → 270.1 for baicalin, 270.1 → 168.1 for baicalein, 461.2 → 284.0 for wogonoside, 284.2 → 168.1 for wogonin and 748.5 → 158.1 for IS. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantification (LLOQ) achieved was 1.13 ng/mL for baicalin, 1.23 ng/mL for baicalein, 0.82 ng/mL for wogonoside and 0.36 ng/mL for wogonin. The calibration curves obtained were linear (r > 0.99) over the concentration range ~ 1–1000 ng/mL. The intra‐ and inter‐day precision was <15% and the accuracy was within ±14.7%. After validation, this method was successfully applied to a pharmacokinetic study of Radix Scutellariae extract.  相似文献   

17.
In this study, a specific and quick ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method was fully developed and validated for simultaneous measurement of the rat plasma levels of vortioxetine (VOR), Lu AA34443 (the major metabolite of VOR), fluoxetine and its metabolite norfluoxetine with diazepam as the internal standard (IS). After a simple protein precipitation with acetonitrile for sample preparation, the separation of the analytes were performed on an Acquity UPLC BEH C18 (2.1 × 50 mm, 1.7 μm) column, with acetonitrile and 0.1% formic acid in water as mobile phase by gradient elution. The detection was achieved on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via an electrospray ionization source. Good linearity was observed in the calibration curve for each analyte. The data of precision, accuracy, matrix effect, recovery and stability all conformed to the bioanalytical method validation of acceptance criteria of US Food and Drug Administration recommendations. The newly developed UPLC–MS/MS method allowed simultaneous quantification of VOR, fluoxetine and their metabolites for the first time and was successfully applied to a pharmacokinetic study in rats.  相似文献   

18.
A rapid, sensitive and specific liquid chromatography tandem mass spectrometry (LC/MS/MS) method was developed and validated for the quantification of heteroclitin D in rat plasma after using gambogic acid as internal standard (IS). Chromatographic separation was done on a Thermo Hypersil GOLD column (30 × 2.1 mm, 3 µm) using a mobile phase consisting of methanol–water–formic acid (80:20:0.1, v/v/v). The mass spectrometer worked with positive electrospray ionization in multiple reaction monitoring mode, using target ions at [M + H]+ m/z 483.3 for heteroclitin D and [M + H]+ m/z 629.3 for the IS. The standard curve was linear (R2 ≥0.995) over the concentration range 9.98–2080 ng/mL and had good back‐calculated accuracy and precision. The intra‐ and interday precision and accuracy determined on three quality control samples (29.94, 166.4 and 1872 ng/mL) were ≤12.8 and –8.9–3.6%, respectively. The extraction recovery was ≥88.2% and the lower limit of quantification was 9.98 ng/mL. The method was successfully applied to evaluate pharmacokinetics of heteroclitin D in Sprague–Dawley rats following a single intravenous bolus injection of 2.0 mg/kg heteroclitin. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A fully valid UHPLC–MS/MS method was developed for the determination of etoposide, gemcitabine, vinorelbine and their metabolites (etoposide catechol, 2′,2′‐difluorodeoxyuridine and 4‐O ‐deacetylvinorelbine) in human plasma. The multiple reaction monitoring mode was performed with an electrospray ionization interface operating in both the positive and negative ion modes per compound. The method required only 100 μL plasma with a one‐step simple de‐proteinization procedure, and a short run time of 7.5 min per sample. A Waters ACQUITY UPLC HSS T3 column (2.1 × 100 mm, 1.8 μm) provided chromatographic separation of analytes using a binary mobile phase gradient (A, 0.1% formic acid in acetonitrile, v /v; B, 0.1% formic acid in water, v /v). Linear coefficients of correlation were >0.995 for all analytes. The relative deviation of this method was <10% for intra‐ and inter‐day assays and the accuracy ranged between 86.35% and 113.44%. The mean extraction recovery and matrix effect of all the analytes were 62.07–105.46% and 93.67–105.87%, respectively. This method was successfully applied to clinical samples from patients with lung cancer.  相似文献   

20.
A reliable and sensitive UPLC–MS/MS method was first established and validated for the simultaneous determination of seven active ingredients of Yaobitong capsule in rat plasma: ginsenoside Rg1, ginsenoside Rb1, osthole, tetrahydropalmatine, paeoniflorin, albiflorin, and ferulic acid. And this method was further applied for the integrated pharmacokinetic study of Yaobitong capsule in rats after oral administration. Plasma samples (100 μL) were precipitated with 300 μL of methanol using carbamazepine as internal standard. Chromatographic separation was achieved using an Aquity UPLC BEH C18 column (100 × 2.1 mm, 1.7 μm), with the mobile phase consisting of 0.1% formic acid and acetonitrile. The method was validated using a good linear relationship (r ≥ 0.991), and the lower limit of quantification of the analytes ranged from 0.5 to 40 ng/mL. In the integrated pharmacokinetic study, the weight coefficient was calculated by the ratio of AUC0–∞ of each component to the total AUC0–∞ of the seven active ingredients. The integrated pharmacokinetic parameters Cmax, Tmax, and t1/2 were 81.54 ± 9.62 ng/mL, 1.00 ± 0.21 h, and 3.26 ± 1.14 h, respectively. The integration of pharmacokinetic parameters showed a shorter t1/2 because of fully considering the contribution of the characteristics of each active ingredient to the overall pharmacokinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号