首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Electrocatalytic water splitting to produce hydrogen and oxygen is regarded as one of the most promising methods to generate clean and sustainable energy for replacing fossil fuels. However, the design and development of an efficient bifunctional catalyst for simultaneous generation of hydrogen and oxygen remains extremely challenging yet is critical for the practical implementation of water electrolysis. Here, we report a facile method to fabricate novel N‐doped carbon nanotube frameworks (NCNTFs) by the pyrolysis of a bimetallic metal organic framework (MIL‐88‐Fe/Co). The resultant electrocatalyst, Co3Fe7@NCNTFs, exhibits excellent oxygen evolution reaction (OER) activity, achieving 10 mA/cm2 at a low overpotential of just 264 mV in 1 M KOH solution, and 197 mV for the hydrogen evolution reaction. The high electrocatalytic activity arises from the synergistic effect between the chemistry of the Co3Fe7 and the NCNTs coupled to the novel framework structure. The remarkable electrocatalytic performance of our bifunctional electrocatalyst provides a promising pathway to high‐performance overall water splitting and electrochemical energy devices.  相似文献   

2.
Exploring low‐cost and high‐performance nonprecious metal catalysts (NPMCs) for oxygen reduction reaction (ORR) in fuel cells and metal–air batteries is crucial for the commercialization of these energy conversion and storage devices. Here we report a novel NPMC consisting of Fe3C nanoparticles encapsulated in mesoporous Fe‐N‐doped carbon nanofibers, which is synthesized by a cost‐effective method using carbonaceous nanofibers, pyrrole, and FeCl3 as precursors. The electrocatalyst exhibits outstanding ORR activity (onset potential of ?0.02 V and half‐wave potential of ?0.140 V) closely comparable to the state‐of‐the‐art Pt/C catalyst in alkaline media, and good ORR activity in acidic media, which is among the highest reported activities of NPMCs.  相似文献   

3.
A challenging but pressing task to design and synthesize novel, efficient, and robust pH‐universal hydrogen evolution reaction (HER) electrocatalysts for scalable and sustainable hydrogen production through electrochemical water splitting. Herein, we report a facile method to prepare an efficient and robust Ru‐M (M=Ni, Mn, Cu) bimetal nanoparticle and carbon quantum dot hybrid (RuM/CQDs) for pH‐universal HER. The RuNi/CQDs catalysts exhibit outstanding HER performance at all pH levels. The unexpected low overpotentials of 13, 58, and 18 mV shown by RuNi/CQDs allow a current density of 10 mA cm?2 in 1 m KOH, 0.5 m H2SO4, and 1 m PBS, respectively, for Ru loading at 5.93 μgRu cm?2. This performance is among the best catalytic activities reported for any platinum‐free electrocatalyst. Theoretical studies reveal that Ni doping results in a moderate weakening of the hydrogen bonding energy of nearby surface Ru atoms, which plays a critical role in improving the HER activity.  相似文献   

4.
Developing noble‐metal‐free electrocatalysts is important to industrially viable ammonia synthesis through the nitrogen reduction reaction (NRR). However, the present transition‐metal electrocatalysts still suffer from low activity and Faradaic efficiency due to poor interfacial reaction kinetics. Herein, an interface‐engineered heterojunction, composed of CoS nanosheets anchored on a TiO2 nanofibrous membrane, is developed. The TiO2 nanofibrous membrane can uniformly confine the CoS nanosheets against agglomeration, and contribute substantially to the NRR performance. The intimate coupling between CoS and TiO2 enables easy charge transfer, resulting in fast reaction kinetics at the heterointerface. The conductivity and structural integrity of the heterojunction are further enhanced by carbon nanoplating. The resulting C@CoS@TiO2 electrocatalyst achieves a high ammonia yield (8.09×10?10 mol s?1 cm?2) and Faradaic efficiency (28.6 %), as well as long‐term durability.  相似文献   

5.
Developing noble‐metal‐free bifunctional oxygen electrocatalysts is of great significance for energy conversion and storage systems. Herein, we have developed a transformation method for growing NiMn‐based bimetal–organic framework (NiMn‐MOF) nanosheets on multi‐channel carbon fibers (MCCF) as a bifunctional oxygen electrocatalyst. Owing to the desired components and architecture, the MCCF/NiMn‐MOFs manifest comparable electrocatalytic performance towards oxygen reduction reaction (ORR) with the commercial Pt/C electrocatalyst and superior performance towards oxygen evolution reaction (OER) to the benchmark RuO2 electrocatalyst. X‐ray absorption fine structure (XAFS) spectroscopy and density functional theory (DFT) calculations reveal that the strong synergetic effect of adjacent Ni and Mn nodes within MCCF/NiMn‐MOFs effectively promotes the thermodynamic formation of key *O and *OOH intermediates over active NiO6 centers towards fast ORR and OER kinetics.  相似文献   

6.
Highly active, stable, and cheap Pt‐free catalysts for the hydrogen evolution reaction (HER) are under increasing demand for future energy conversion systems. However, developing HER electrocatalysts with Pt‐like activity that can function at all pH values still remains as a great challenge. Herein, based on our theoretical predictions, we design and synthesize a novel N,P dual‐doped carbon‐encapsulated ruthenium diphosphide (RuP2@NPC) nanoparticle electrocatalyst for HER. Electrochemical tests reveal that, compared with the Pt/C catalyst, RuP2@NPC not only has Pt‐like HER activity with small overpotentials at 10 mA cm−2 (38 mV in 0.5 m H2SO4, 57 mV in 1.0 m PBS and 52 mV in 1.0 m KOH), but demonstrates superior stability at all pH values, as well as 100 % Faradaic yields. Therefore, this work adds to the growing family of transition‐metal phosphides/heteroatom‐doped carbon heterostructures with advanced performance in HER.  相似文献   

7.
The need for renewable energy focuses attention on hydrogen obtained by using sustainable and green methods. The sustainable compound glycerol can be used for hydrogen production by heterogeneous photocatalysis. A novel approach involves the promotion of the TiO2 photocatalyst with a binary combination of nitrogen and transition metal. We report the synthesis and spectroscopic characterization of the new N‐M‐TiO2 photocatalysts (M=none, Cr, Co, Ni, Cu), and the photocatalytic reforming of glycerol to hydrogen under ambient conditions and near‐UV or visible light versus benchmark P25 TiO2. In units of activity μmol m?2 h?1, N‐Ni‐TiO2 is five‐fold more active than P25, and N‐Cu‐TiO2 is 44‐fold more active. The photocatalytic activity of N‐M‐TiO2 increases from Cr to Co and Ni, whereas the photoluminescence decreases; the change in activity is due to the modulation of charge recombination.  相似文献   

8.
Common‐metal‐based single‐atom catalysts (SACs) are quite difficult to design due to the complex synthesis processes required. Herein, we report a single‐atom nickel iodide (SANi‐I) electrocatalyst with atomically dispersed non‐metal iodine atoms. The SANi‐I is prepared via a simple calcination step in a vacuum‐sealed ampoule and subsequent cyclic voltammetry activation. Aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy and synchrotron‐based X‐ray absorption spectroscopy are applied to confirm the atomic‐level dispersion of iodine atoms and detailed structure of SANi‐I. Single iodine atoms are found to be isolated by oxygen atoms. The SANi‐I is structural stable and shows exceptional electrocatalytic activity for the hydrogen evolution reaction (HER). In situ Raman spectroscopy reveals that the hydrogen adatom (Hads) is adsorbed by a single iodine atom, forming the I‐Hads intermediate, which promotes the HER process.  相似文献   

9.
A ferrocene‐based ionic liquid (Fe‐IL) is used as a metal‐containing feedstock with a nitrogen‐enriched ionic liquid (N‐IL) as a compatible nitrogen content modulator to prepare a novel type of non‐precious‐metal–nitrogen–carbon (M‐N‐C) catalysts, which feature ordered mesoporous structure consisting of uniform iron oxide nanoparticles embedded into N‐enriched carbons. The catalyst Fe10@NOMC exhibits comparable catalytic activity but superior long‐term stability to 20 wt % Pt/C for ORR with four‐electron transfer pathway under alkaline conditions. Such outstanding catalytic performance is ascribed to the populated Fe (Fe3O4) and N (N2) active sites with synergetic chemical coupling as well as the ordered mesoporous structure and high surface area endowed by both the versatile precursors and the synthetic strategy, which also open new avenues for the development of M‐N‐C catalytic materials.  相似文献   

10.
Electrocatalytic reduction of CO2 to a single product at high current densities and efficiencies remains a challenge. However, the conventional electrode preparation methods, such as drop‐casting, usually suffer from low intrinsic activity. Herein, we report a synthesis strategy for preparing heterogeneous electrocatalyst composed of 3D hierarchical Cu dendrites that derived from an in situ electrosynthesized hollow copper metal–organic framework (MOF), for which the preparation of the Cu‐MOF film took only 5 min. The synthesis strategy preferentially exposes active sites, which favor's the reduction of CO2 to formate. The current density could be as high as 102.1 mA cm?2 with a selectivity of 98.2 % in ionic‐liquid‐based electrolyte and a commonly used H‐type cell.  相似文献   

11.
High‐performance non‐noble electrocatalysts for oxygen reduction reaction (ORR) are the prerequisite for large‐scale utilization of fuel cells. Herein, a type of sandwiched‐like non‐noble electrocatalyst with highly dispersed FeNx active sites embedded in a hierarchically porous carbon/graphene heterostructure was fabricated using a bottom‐up strategy. The in situ ion substitution of Fe3+ in a nitrogen‐containing MOF (ZIF‐8) allows the Fe‐heteroatoms to be uniformly distributed in the MOF precursor, and the assembly of Fe‐doped ZIF‐8 nano‐crystals with graphene‐oxide and in situ reduction of graphene‐oxide afford a sandwiched‐like Fe‐doped ZIF‐8/graphene heterostructure. This type of heterostructure enables simultaneous optimization of FeNx active sites, architecture and interface properties for obtaining an electron‐catalyst after a one‐step carbonization. The synergistic effect of these factors render the resulting catalysts with excellent ORR activities. The half‐wave potential of 0.88 V vs. RHE outperforms most of the none‐noble metal catalyst and is comparable with the commercial Pt/C (20 wt %) catalyst. Apart from the high activity, this catalyst exhibits excellent durability and good methanol‐tolerance. Detailed investigations demonstrate that a moderate content of Fe dopants can effectively increase the intrinsic activities, and the hybridization of graphene can enhance the reaction kinetics of ORR. The strategy proposed in this work gives an inspiration towards developing efficient noble‐metal‐free electrocatalysts for ORR.  相似文献   

12.
It is highly attractive but challenging to develop earth‐abundant electrocatalysts for energy‐saving electrolytic hydrogen generation. Herein, we report that Ni2P nanoarrays grown in situ on nickel foam (Ni2P/NF) behave as a durable high‐performance non‐noble‐metal electrocatalyst for hydrazine oxidation reaction (HzOR) in alkaline media. The replacement of the sluggish anodic oxygen evolution reaction with such the more thermodynamically favorable HzOR enables energy‐saving electrochemical hydrogen production with the use of Ni2P/NF as a bifunctional catalyst for anodic HzOR and cathodic hydrogen evolution reaction. When operated at room temperature, this two‐electrode electrolytic system drives 500 mA cm−2 at a cell voltage as low as 1.0 V with strong long‐term electrochemical durability and 100 % Faradaic efficiency for hydrogen evolution in 1.0 m KOH aqueous solution with 0.5 m hydrazine.  相似文献   

13.
A theoretical and experimental study gives insights into the nature of the metal–boron electronic interaction in boron‐bearing intermetallics and its effects on surface hydrogen adsorption and hydrogen‐evolving catalytic activity. Strong hybridization between the d orbitals of transition metal (TM) and the sp orbitals of boron exists in a family of fifteen TM–boron intermatallics (TM:B=1:1), and hydrogen atoms adsorb more weakly to the metal‐terminated intermetallic surfaces than to the corresponding pure metal surfaces. This modulation of electronic structure makes several intermetallics (e.g., PdB, RuB, ReB) prospective, efficient hydrogen‐evolving materials with catalytic activity close to Pt. A general reaction pathway towards the synthesis of such TMB intermetallics is provided; a class of seven phase‐pure TMB intermetallics, containing V, Nb, Ta, Cr, Mo, W, and Ru, are thus synthesized. RuB is a high‐performing, non‐platinum electrocatalyst for the hydrogen evolution reaction.  相似文献   

14.
A novel OER electrocatalyst, namely oxygen‐incorporated amorphous cobalt sulfide porous nanocubes (A‐CoS4.6O0.6 PNCs), show advantages over the benchmark RuO2 catalyst in alkaline/neutral medium. Experiments combining with calculation demonstrate that the desirable O* adsorption energy, associated with the distorted CoS4.6O0.6 octahedron structure and the oxygen doping, contribute synergistically to the outstanding electrocatalytic activity.  相似文献   

15.
Metal–CO2 batteries have attracted much attention owing to their high energy density and use of greenhouse CO2 waste as the energy source. However, the increasing cost of lithium and the low discharge potential of Na–CO2 batteries create obstacles for practical applications of Li/Na–CO2 batteries. Recently, earth‐abundant potassium ions have attracted considerable interest as fast ionic charge carriers for electrochemical energy storage. Herein, we report the first K–CO2 battery with a carbon‐based metal‐free electrocatalyst. The battery shows a higher theoretical discharge potential (E?=2.48 V) than that of Na–CO2 batteries (E?=2.35 V) and can operate for more than 250 cycles (1500 h) with a cutoff capacity of 300 mA h g?1. Combined DFT calculations and experimental observations revealed a reaction mechanism involving the reversible formation and decomposition of P121/c1‐type K2CO3 at the efficient carbon‐based catalyst.  相似文献   

16.
In novel superatom chemistry, it is very attractive that all‐metal clusters can mimic the behaviors of nonmetal atoms and simple nonmetal molecules. Wizardly all‐metal halogen‐like superatom Al13 with 2P5 sub shell (corresponding to the 3p5 of chlorine) is the most typical example. In contrast, how to mimic the behaviors of magnetic transition‐metal atom using all‐nonmetal cluster is an intriguing challenge for superatom chemistry. In response to this based on human intuition, using quantum chemistry methods and extending jellium model from metal cluster to all‐nonmetal cluster, we have found out that all‐nonmetal octahedral B6 cluster with characteristic jellium electron configuration 1S21P62S21D8 in the triplet ground state can mimic the behaviors of transition‐metal Ni atom with electron configuration 3s23p64s23d8 in electronic configuration, physics and chemistry. Interestingly, the characteristic order of 1S1P2S1D for the B6 nonmetal cluster with short B‐B lengths is different from that of the traditional jellium model—1S1P1D2S for metal clusters with long M‐M lengths, which exhibits a novel size effect of nonmetal cluster on jellium orbital ordering. Based on the jellium electron configuration, the B6 with the spin moment value of 2μB is a new all‐nonmetal transition‐metal nickel‐like superatom exhibiting a new kind of all‐nonmetal magnetic superatom. Finding the application of the all‐nonmetal magnetic superatom, we encapsulate the magnetic superatom B6 inside fully hydrogenated fullerene forming a clathrate B6@C60H60 with the spin moment value of 2μB. As the C60H60 cage as a polymerization unit can conserve the spin moment of endohedral B6, the clathrate B6@C60H60 is a new all‐nonmetal magnetic superatom building block. Naturally, magnetic superatom structures of the B6 and B6@C60H60 may be metastable.  相似文献   

17.
Electrochemical water splitting for hydrogen generation is a vital part for the prospect of future energy systems, however, the practical utilization relies on the development of highly active and earth‐abundant catalysts to boost the energy conversion efficiency as well as reduce the cost. Molybdenum diselenide (MoSe2) is a promising nonprecious metal‐based electrocatalyst for hydrogen evolution reaction (HER) in acidic media, but it exhibits inferior alkaline HER kinetics in great part due to the sluggish water adsorption/dissociation process. Herein, the alkaline HER kinetics of MoSe2 is substantially accelerated by heteroatom doping with transition metal ions. Specifically, the Ni‐doped MoSe2 nanosheets exhibit the most impressive catalytic activity in terms of lower overpotential and larger exchange current density. The density functional theory (DFT) calculation results reveal that Ni/Co doping plays a key role in facilitating water adsorption as well as optimizing hydrogen adsorption. The present work paves a new way to the development of low‐cost and efficient electrocatalysts towards alkaline HER.  相似文献   

18.
Developing non‐noble‐metal electrocatalyst for non‐enzymatic H2O2 sensing is highly attractive. A facile, two‐step approach has been utilized for the synthesis of PBNCs/SnO2 QDs/RGO ternary nanocomposite. TEM, SEM, XPS, and XRD techniques were used to the characterize the structural and morphological properties of synthesized ternary nanocomposite. The synthesized ternary nanocomposite has been examined as an electrode material for the electrochemical detection of H2O2 using the Amperometry technique. Under optimum conditions, PBNCs/SnO2 QDs/RGO ternary nanocomposite performed very well in the electrocatalytic reduction of H2O2 with a linear dynamic range from 25–225 μM (R2=0.996) with a low detection limit of 71 nM (S/N=3). Compared to the recent literature, PBNCs/SnO2QDs/RGO ternary nanocomposite based modified electrode exhibit a wider linear dynamic range with a low detection limit. Furthermore, PBNCs/SnO2 QDs/RGO ternary nanocomposite based modified electrode showed an excellent anti‐interference ability against various common interfering agents. The practical applicability of this ternary nanocomposite based modified electrode was further extended to determine the H2O2 in tap water with acceptable recovery. The present performance of PBNCs/SnO2 QDs/RGO ternary nanocomposite material towards H2O2 sensing might widen its application for developing a new type of non‐noble metal‐based non‐enzymatic electrochemical biosensors.  相似文献   

19.
Low‐cost, non‐noble‐metal electrocatalysts are required for direct methanol fuel cells, but their development has been hindered by limited activity, high onset potential, low conductivity, and poor durability. A surface electronic structure tuning strategy is presented, which involves doping of a foreign oxophilic post‐transition metal onto transition metal aerogels to achieve a non‐noble‐metal aerogel Ni97Bi3 with unprecedented electrocatalytic activity and durability in methanol oxidation. Trace amounts of Bi are atomically dispersed on the surface of the Ni97Bi3 aerogel, which leads to an optimum shift of the d‐band center of Ni, large compressive strain of Bi, and greatly increased conductivity of the aerogel. The electrocatalyst is endowed with abundant active sites, efficient electron and mass transfer, resistance to CO poisoning, and outstanding performance in methanol oxidation. This work sheds light on the design of high‐performance non‐noble‐metal electrocatalysts.  相似文献   

20.
In this article, the coordination mode, the nature of metal–ligand interaction and dimetallic bonding in heteronuclear group‐13 dimetallocene (CpMM′CpI2; Cp = C5H5, M/M′=B, Al, Ga, In, and Tl) have been investigated within the framework of the atoms in molecules theory, electron localization function, and energy decomposition analysis. The calculated results show that the symmetries of the title compounds, the coordination modes between the metal and ligand, the strength and nature of M‐ligand interaction and M M′ bond are well correlated with the periodicity changing of group‐13 metal atom going from the lighter to the heavier (B, Al, Ga, In, and Tl). The heavier group 13 metal atom is corresponding to the higher symmetry, stronger metal–ligand interaction, and weaker dimetallic bond. The covalent characters of both metal–ligand interaction and dimetallic bond are decreasing in the sequence of M′=Al, Ga, In, and Tl, for the same M atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号