首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high‐throughput and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method has been developed for the determination of terbinafine in human plasma. The method employed liquid–liquid extraction of terbinafine and terbinafine‐d7 (used as internal standard) from 100 μL human plasma with ethyl acetate–n‐hexane (80:20, v/v) solvent mixture. Chromatography was performed on a BEH C18 (50 × 2.1 mm, 1.7 μm) column using acetonitrile–8.0 mm ammonium formate, pH 3.5 (85:15, v/v) under isocratic elution. For quantitative analysis, MS/MS ion transitions were monitored at m/z 292.2/141.1 and m/z 299.1/148.2 for terbinafine and terbinafine‐d7, respectively, using electrospray ionization in the positive mode. The method was validated according to regulatory guidance for selectivity, sensitivity, linearity, recovery, matrix effect, stability, dilution reliability and ruggedness with acceptable accuracy and precision. The method shows good linearity over the tested concentration range from 1.00 to 2000 ng/mL (r2 ≥ 0.9984). The intra‐batch and inter‐batch precision (CV) was 1.8–3.2 and 2.1–4.5%, respectively. The method was successfully applied to a bioequivalence study with 250 mg terbinafine in 32 healthy subjects. The major advantage of this method includes higher sensitivity, small plasma volume for processing and a short analysis time.  相似文献   

2.
An ultra performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the determination of nifedipine in human plasma using nifedipine‐d6 as the internal standard (IS). The plasma samples were prepared by solid‐phase extraction on Phenomenex Strata‐X cartridges employing 200 μL human plasma. Chromatography was carried out on Waters Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 µm particle size) analytical column under isocratic conditions using a mobile phase consisting of 4.0 mm ammonium acetate‐acetonitrile (15:85, v/v). The precursor → product ion transitions for nifedipine (m/z 347.2 → 315.2) and IS (m/z 353.1 → 318.1) were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring and positive‐ion mode. The method was validated over a wide dynamic concentration range of 0.050–150 ng/mL. Matrix effect was assessed by post‐column analyte infusion and the mean extraction recovery was 95.6% across four quality control levels. The method is rugged and rapid with a total run time of 1.2 min and was applied to a bioequivalence study of 20 mg nifedipine tablet formulation in 30 healthy Indian subjects under fasting condition. Assay reproducibility was confirmed by reanalysis of 116 incurred samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
An ultra‐performance liquid chromatography with tandem mass spectrometry (UPLC–MS/MS) method was developed and validated to concurrently determine rhynchophylline and hirsutine in rat plasma. The sample preparation of rat plasma was achieved by alkalization and liquid–liquid extraction. The mass transition of precursor ion → product ion pairs were monitored at m/z 385.2 → 160.0 for rhynchophylline, m/z 369.3 → 144.0 for hirsutine and m/z 414.0 → 220.0 for noscapine (internal standard). This method revealed linear relationships from 2.5 to 50 ng/mL (r2 > 0.997) for rhynchophylline and from 2.5 to 50 ng/mL (r2 > 0.998) for hirsutine. The limit of quantification values for rhynchophylline and hirsutine in rat plasma were both 2.5 ng/mL. Intra‐day and inter‐day precisions were within 10.6% and 12.5%, respectively, for rhynchophylline and hirsutine, and the accuracy (bias) was <10%. Liquid–liquid extraction of rat plasma samples resulted in insignificant matrix effect, and the extraction recoveries were >83.6% for rhynchophylline, 73.4% for hirsutine and 90.7% for the internal standard. This method was applied successfully to a pharmacokinetic study of rhynchophylline and hirsutine in rats after oral administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A high‐throughput and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the determination of flunarizine in human plasma. Liquid–liquid extraction under acidic conditions was used to extract flunarizine and flunarizine‐d8 from 100 μL human plasma. The mean extraction recovery obtained for flunarizine was 98.85% without compromising the sensitivity of the method. The chromatographic separation was performed on Hypersil Gold C18 (50 × 2.1 mm, 3 μm) column using methanol–10 mm ammonium formate, pH 3.0 (90:10, v/v) as the mobile phase. A tandem mass spectrometer (API‐5500) equipped with an electrospray ionization source in the positive ion mode was used for detection of flunarizine. Multiple reaction monitoring was selected for quantitation using the transitions, m/z 405.2 → 203.2 for flunarizine and m/z 413.1 → 203.2 for flunarizine‐d8. The validated concentration range was established from 0.10 to 100 ng/mL. The accuracy (96.1–103.1%), intra‐batch and inter‐batch precision (CV ≤ 5.2%) were satisfactory and the drug was stable in human plasma under all tested conditions. The method was used to evaluate the pharmacokinetics of 5 and 10 mg flunarizine tablet formulation in 24 healthy subjects. The pharmacokinetic parameters Cmax and AUC were dose‐proportional.  相似文献   

5.
A selective, sensitive and rapid ultra‐performance liquid chromatography tandem mass spectrometry method was developed and validated for the simultaneous determination of etonogestrel (ENG) and ethinyl estradiol (EE) in human plasma. The analytes and their deuterated internal standards, ENG‐d7 and EE‐d4, were extracted from plasma samples by solid‐phase extraction on HyperSep™ Retain PEP cartridges. The chromatographic analysis was performed on an Acquity UPLC HSS Cyano column, 100 Å (50 × 2.1 mm, 1.8 μm), column using gradient mobile phase, acetonitrile and 2.0 mm ammonium trifluoroacetate at 0–1.7 min (65:35, v/v) and 1.8–2.7 min (95:5, v/v) with 0.250 mL/min flow rate. Analytes and IS protonated precursor → product ion transitions (ENG, m/z 325.2 → 257.2; EE, m/z 530.2 → 171.2; ENG‐d7, m/z 332.2 → 263.2; EE‐d4, m/z 534.2 → 171.2) were monitored on a Triple Quadrupole Mass spectrometer (TQMS), operating in multiple reaction monitoring and positive ionization mode. The calibration curves were established at 10.00–2500 pg/mL for ENG and 1.500–150.0 pg/mL for EE with a correlation coefficient (r2) ≥0.9996 for both. The validated method was successfully applied to support a bioequivalence study of 0.15 mg ENG and EE 0.03 mg tablet formulation, administered in 24 healthy Indian females. Method reliability was assessed by reanalysis of 94 incurred study samples.  相似文献   

6.
A precise, high‐throughput and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the determination of fluorochloridone (FLC) in rat plasma. The extraction of analytes from plasma samples was carried out by protein precipitation procedure using acetonitrile prior to UPLC‐MS/MS analysis. Verapamil was proved as a proper internal standard (IS) among many candidates. The chromatographic separation based on UPLC was well optimized. Multiple reaction monitoring in positive electrospray ionization was used with the optimized MS transitions at: m/z 312.0 → 292.0 for FLC and m/z 456.4 → 165.2 for IS. This method was well validated with good linear response (r2 > 0.998) observed over the investigated range of 3–3000 ng/mL and with satisfactory stability. This method was also characterized with adequate intra‐ and inter‐day precision and accuracy (within 12%) in the quality control samples, and with high selectivity and less matrix effect observed. Total running time was only 1.5 min. This method has been successfully applied to a pilot FLC pharmacokinetic study after oral administration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, a sensitive and selective ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method for determination of hupehenine in rat plasma was developed and validated. After addition of imperialine as an internal standard (IS), protein precipitation by acetonitrile–methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m/z 416.3 → 98.0 for hupehenine, and m/z 430.3 → 138.2 for IS. Calibration plots were linear throughout the range 2–2000 ng/mL for hupehenine in rat plasma. Mean recoveries of hupehenine in rat plasma ranged from 92.5 to 97.3%. Relative standard deviations of intra‐day and inter‐day precision were both <6%. The accuracy of the method was between 92.7 and 107.4%. The method was successfully applied to a pharmacokinetic study of hupehenine after either oral or intravenous administration. For the first time, the bioavailability of hupehenine was reported as 13.4%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The aim of this study was to establish and validate a rapid, selective and reliable ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) for simultaneous quantitations of morin and morusin, and to investigate their pharmacokinetics difference between normal and diabetic rats after oral administration. Plasma samples were pretreated via protein precipitation with acetonitrile. Genkwanin was used as internal standard (IS). Analytes and IS were separated on a Thermo Hypersil Gold C18 column (50 × 4.6 mm, 3 μm) using gradient elution. The mobile phase consisted of acetonitrile and 0.1% formic acid in water at a flow rate of 0.5 mL/min. Mass spectrometry detection was carried out by means of negative electrospray ionization source and multipe‐reaction monitoring mode. The transitions of m/z 300.9 → 151.2 for morin, m/z 419.2 → 297.1 for morusin and m/z 283.1 → 268.2 for IS were chosen for quantification. Calibration curves were linear in the range of 1.01–504.2 ng/mL (r2 ≥ 0.99) for morin and 1.02–522.3 ng/mL (r2 ≥ 0.99) for morusin. The lower limit of quantification was 1.02 ng/mL for morin and 1.05 ng/mL for morusin. The extraction recovery was >85.1% for each analyte. No obvious matrix effect was observed under the present UPLC–MS/MS conditions during all of the bioanalysis. The stability study demonstrated that morin and morusin remained stable during the whole analytical procedure. The method was successfully applied to support the pharmacokinetic comparisons of morin and morusin between normal and diabetic rats.  相似文献   

9.
The purpose of this study was to develop and validate an LC–MS/MS method for simultaneous determination of idelalisib and GS‐563117 in dog plasma. The analytes were extracted using ethyl acetate and then separated on a Waters Acquity UPLC BEH C18 column (50 × 2.1 mm, i. d., 1.7 μm) using 0.1% formic acid in water and acetonitrile as mobile phase at a flow rate of 0.3 mL/min in gradient elution mode. The analytes were quantified using selected reaction monitoring with precursor‐to‐product transitions at m/z 416.2 → 176.1, m/z 432.2 → 192.1 and m/z 421.2 → 176.1 for idelalisib, GS‐563117 and [2H5]‐idelalisib (internal standard). The assay showed good linearity (r > 0.9992) over the tested concentration range of 0.1–600 ng/mL for idelalisib and 0.1–300 ng/mL for GS‐563117. The intra‐ and inter‐day RSD values for idelalisib and GS‐563117 were <8.84 and 12.41%, respectively. The intra‐ and inter‐day RE values were within the range of ?7.21–8.52%, and ?6.44–14.23%, respectively. The extraction recovery was found to be >84.59% and no matrix effects were observed. The validated LC–MS/MS method has been successfully applied for the simultaneous determination of idelalisib and GS‐563117 in a pharmacokinetic study in dogs. Our results suggested that idelalisib was rapidly metabolized into its metabolite GS‐563117 in dog and the in vivo exposure of GS‐563117 was 17.59% of that of idelalisib.  相似文献   

10.
A simple, rapid and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed and validated for the determination of alosetron (ALO) in human plasma. The assay method involved solid‐phase extraction of ALO and ALO 13C‐d3 as internal standard (IS) on a LichroSep DVB‐HL (30 mg, 1 cm3) cartridge. The chromatography was performed on an Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 µm) column using acetonitrile and 2.0 mm ammonium formate, pH 3.0 adjusted with 0.1% formic acid (80:20, v/v) as the mobile phase in an isocratic mode. For quantitative analysis, the multiple reaction monitoring transitions studied were m/z 295.1/201.0 for ALO and m/z 299.1/205.1 for IS in the positive ionization mode. The method was validated over a concentration range of 0.01–10.0 ng/mL for ALO. Post‐column infusion experiment showed no positive or negative peaks in the elution range of the analyte and IS after injection of extracted blank plasma. The extent of ion‐suppression/enhancement, expressed as IS‐normalized matrix factor, varied from 0.96 to 1.04. The assay recovery was within 97–103% for ALO and IS. The method was successfully applied to support a bioequivalence study of 1.0 mg alosetron tablets in 28 healthy Indian male and female subjects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A simple and sensitive method based on ultra‐high‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) has been developed for the determination of TM‐2, which was a novel semi‐synthetic taxane derivative in beagle dog plasma. Cabazitaxel was chosen as internal standard. Following extraction by methyl tert‐butyl ether, the chromatographic separation was achieved on a Thermo Syncronis C18 column (50 × 2.1 mm, 1.7 µm) by gradient elution within a runtime of 3.5 min. The mobile phase consisted of (A) acetonitrile and (B) 2 mmol/L ammonium acetate in water. The detection was accomplished using positive ion electrospray ionization in multiple reaction monitoring mode. The MS/MS ion transitions were monitored at m/z 812.39 → 551.35 for TM‐2 and 836.36 → 555.26 for IS, respectively. The method was linear for TM‐2 (r = 0.9924) ranging from 2.5 to 1000 ng/mL. The intra‐day and inter‐day precisions (relative standard deviation) were within 8.0 and 17.6%, respectively, and the accuracy (relative error) was less than 2.3%. The extraction recovery ranged from 83.1 to 97.1%. The reliable method was successfully applied to a pharmacokinetic study of TM‐2 in beagle dogs after intravenous drip with different doses of 0.6, 1.2, and 2.4 mg/kg, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The purpose of this study was to develop an ultra‐performance liquid chromatography with tandem mass spectrometry (UPLC‐MS/MS) method to determine armepavine in mouse blood. Nuciferine was used as internal standard. Chromatographic separation was performed on a UPLC BEH (2.1 × 50 mm, 1.7 μm) column with a gradient elution of acetonitrile and 10 mmol/L ammonium acetate solution (containing 0.1% formic acid). The quantitative analysis was conducted in multiple reaction monitoring mode with m/z 314.1 → 106.9 for armepavine and m/z 296.2 → 265.1 for nuciferine. Calibration curves were linear (r > 0.995) over the concentration range 1–1000 ng/mL in mouse blood with a lowest limit of quantitation of 1 ng/mL. The intra‐ and inter‐day precisions of armepavine in mouse were < 13.5 and 10.8%, respectively. The accuracy ranged between 86.8 and 103.3%. Meanwhile, the average recovery was >70.7% and the matrix effect was within the range 109.5–113.7%. All of the obtained data confirmed the satisfactory sensitivity and selectivity of the developed method which was then successfully applied to evaluate the pharmacokinetic behavior of armepavine in mouse for the first time. The bioavailability of armepavine in mouse was calculated to be 11.3%.  相似文献   

13.
Methamphetamine abuse continues as a major problem in the USA owing to its powerful psychological addictive properties. AZ66, 3‐[4‐(4‐cyclohexylpiperazine‐1‐yl)pentyl]‐6‐fluorobenzo[d]thiazole‐2(3H)‐one, an optimized sigma receptor ligand, is a promising therapeutic agent against methamphetamine. To study the in vivo pharmacokinetics of this novel sigma receptor ligand in rats, a sensitive ultra‐performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method was developed in rat plasma and validated. The developed method requires a small volume of plasma (100 μL) and a simple liquid–liquid extraction. The chromatographic separations were achieved in 3.3 min using an Acquity UPLC BEH Shield RP18 column. The mass spectrophotometric detection was carried out using a Waters Micromass Quattro MicroTM triple‐quadrupole system. Multiple reaction monitoring was used for the quantitation with transitions m/z 406 → m/z 181 for AZ66 and m/z 448 → m/z 285 for aripiprazole. The method was validated over a concentration range of 1–3500 ng/mL and the lower limit of quantitation was determined to be 1 ng/mL. Validation of the assay demonstrated that the developed UPLC/MS/MS method was sensitive, accurate and selective for the determination of AZ66 in rat plasma. The present method has been successfully applied to an i.v. pharmacokinetic study in Sprague–Dawley rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Isoginkgetin is a biflavonoid compound isolated from the leaf extracts of Ginkgo biloba. In this study, an liquid chromatography–tandem mass spectrometry (LC/MS/MS) with liquid–liquid extraction was developed and validated for the analysis of isoginkgetin in rat plasma. In the process of chromatographic separation, selected reaction monitoring transitions for isoginkgetin and IS were m/z 566.8 → 134.7 and m/z 430.8 → 269.3, respectively. The validation parameters including selectivity, linearity, LLOQ, accuracy, precision, matrix effect, stability and recovery were satisfactory. The intra‐ and inter‐batch precision (RSD) were <12.1% in plasma, while the accuracy (RE) was within ±14.3%. This method was employed in a pharmacokinetic study on rats after the intravenous administration of isoginkgetin.  相似文献   

15.
A novel, precise, sensitive and accurate ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method has been developed for the simultaneous determination of a novel drug combination, candesartan (CAN) and chlorthalidone (CHL), in human plasma. Chromatographic separation was achieved on Waters Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 μm). Mobile phase consisting of 1 mm ammonium acetate in water–acetonitrile (20:80 v /v) was used. The total chromatographic runtime was 1.9 min with retention times for CAN and CHL at 0.7 and 1.1 min respectively. Ionization and detection of analytes and internal standards was performed on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring and negative ionization mode. Quantitation was done to monitor protonated precursor → product ion transition of m /z 439.2 → 309.0 for CAN, 337.0 → 189.8 for CHL and 443.2 → 312.1 for candesartan D4 and 341.0 → 189.8 for chlorthalidone D4. The method was validated over a wide dynamic concentration range of 2.0–540.0 ng/mL for candesartan and 1.0–180.0 ng/mL for chlorthalidone. The validated method was successfully applied for the assay of CAN and CHL in healthy volunteers.  相似文献   

16.
An accurate and sensitive LC–MS/MS method for determining thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in human plasma was developed and validated using umbelliferone as an internal standard. The analytes were extracted from plasma (100 μL) by liquid–liquid extraction with ethyl acetate and then separated on a BETASIL C18 column (4.6 × 150 mm, 5 μm) with mobile phase composed of methanol–water containing 0.1% formic acid (70:30, v/v) in isocratic mode at a flow rate of 0.5 mL/min. The detection was performed using an API triple quadrupole mass spectrometer in atmospheric pressure chemical ionization mode. The precursor‐to‐product ion transitions m/z 259.1 → 186.1 for thalidomide, m/z 273.2 → 161.3 for 5‐hydroxy thalidomide, m/z 273.2 → 146.1 for 5′‐hydroxy thalidomide and m/z 163.1 → 107.1 for umbelliferone (internal standard, IS) were used for quantification. The calibration curves were obtained in the concentrations of 10.0–2000.0 ng/mL for thalidomide, 0.2–50.0 ng/mL for 5‐hydroxy thalidomide and 1.0–200.0 ng/mL for 5′‐hydroxy thalidomide. The method was validated with respect to linear, within‐ and between‐batch precision and accuracy, extraction recovery, matrix effect and stability. Then it was successfully applied to estimate the concentration of thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in plasma samples collected from Crohn's disease patients after a single oral administration of thalidomide 100 mg.  相似文献   

17.
A simple, sensitive and specific ultra‐performance liquid chromatography/tandem mass spectrometry (UPLC‐MS/MS) method was developed to determine the newly synthesized compound lipoic acid–niacin dimer (N2L) in plasma. Plasma samples were precipitated by methanol using tetrahydropalmatine as internal standard. Chromatographic separation was achieved on an Acquity BEH C18 (2.1 × 50 mm i.d., 1.7 µm) column; the mobile phase contains methanol and buffer solution (water with 0.5% formic acid and 10 mmol/L ammonium acetate). Multiple reaction monitoring (m/z 353.9 → 148.6 for N2L and m/z 356.0 → 192.0 for internal standard) was performed for detection and quantification. The method was validated to be rapid, specific, accurate and precise over the concentration range of 1–750 ng/mL; N2L was not stable on the bench‐top or during freeze–freeze‐thaw cycles in plasma, but was stable in the stock solution and after preparation in the autosampler for 24 h. The utility of the assay was confirmed by pharmacokinetic study of N2L in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A sensitive, selective and rapid LC–ESI–MS/MS method has been developed and validated for the quantification of copanlisib in mouse plasma using enasidenib as an internal standard (IS) as per regulatory guideline. Copanlisib and the IS were extracted from mouse plasma using ethyl acetate as an extraction solvent and chromatographed using an isocratic mobile phase (0.2% formic acid–acetonitrile; 25:75, v/v) on a HyPURITY C18 column. Copanlisib and the IS eluted at ~0.95 and 2.00 min, respectively. The MS/MS ion transitions monitored were m/z 481.1 → 360.1 and m/z 474.0 → 456.0 for copanlisib and the IS, respectively. The calibration range was 3.59–3588 ng/mL. The intra‐ and inter‐batch accuracy and precision (RE and RSD) across quality controls met the acceptance criteria. Stability studies showed that copanlisib was stable in mouse plasma for one month. This novel method has been applied to a pharmacokinetic study in mice.  相似文献   

19.
The aim of this study was to develop an analytical method to determine mequitazine in rat plasma and urine. Mequitazine was separated by UPLC–MS/MS equipped with a Kinetex core–shell C18 column (50 × 2.1 mm, 1.7 μm) using 0.1% (v/v) aqueous formic acid and acetonitrile containing 0.1% (v/v) formic acid as a mobile phase by gradient elution at a flow rate of 0.3 mL/min. Quantitation of this analysis was performed on a triple quadrupole mass spectrometer employing electrospray ionization technique operating in multiple reaction monitoring positive ion mode. Mass transitions were m/z 323.3 → 83.1 for mequitazine and 281.3 → 86.3 for imipramine as internal standard. Liquid–liquid extraction with ethyl acetate and protein precipitation with methanol were used for sample extraction. Chromatograms showed that the method had high resolution, sensitivity and selectivity without interference from plasma constituents. Calibration curves for mequitazine in rat plasma and urine were 0.02–200 ng/mL, showing excellent linearity with correlation coefficients (r2) >0.99. Both intra‐ and inter‐day precisions (CV%) were within 4.08% for rat plasma and urine. The accuracies were 99.58–102.03%. The developed analytical method satisfied the criteria of international guidance. It could be successfully applied to pharmacokinetic studies of mequitazine after oral and intravenous administration to rats.  相似文献   

20.
GL‐V9, a derivative of wogonin, shows much more potent anticancer properties than wogonin. In this study, a selective, sensitive and rapid ultra‐high‐performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method was developed and validated for the determination of GL‐V9 in rat plasma. Plasma samples were processed using methanol to precipitate protein. Chromatographic separation of analytes was achieved on a C18 column using gradient elution within 4.5 min. The mobile phase consisted of acetonitrile and water including 0.1% (v/v) formic acid and 5 mm ammonium acetate. GL‐V9 and caffeine (internal standard) were monitored by positive electrospray triple quadrupole mass spectrometer and quantified using multiple reaction monitoring (MRM) mode with the transitions of m/z 410.20 → 126.10 (GL‐V9) and 195.10 → 138.00 (IS: caffeine), respectively. Good linearity was obtained over the range of 2–1000 ng/mL (R2 > 0.99) and the extraction recovery was 101.91 ± 11.34%. The intra‐ and inter‐day precision variations were small (RSD 1.35–6.96%) and the relative error (RE) of accuracy was ?7.35–6.27%. The established and validated UPLC–MS/MS method was successfully applied to study the pharmacokinetic behavior of GL‐V9 after administration through different delivery routes. The results demonstrated that pulmonary delivery exhibited a greater advantage in terms of improving bioavailability compared with oral administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号