首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Enantiomeric separations of 18 chiral polychlorinated biphenyls (PCBs) were investigated on three polysaccharide-type chiral stationary phases (CSPs; Sino-Chiral OJ, Chiralpak IB, and Chiralcel OD) by supercritical fluid chromatography (SFC). With these commonly used polysaccharide CSPs, 17 PCBs except PCB 135 (R(S) = 0.81) were well resolved (R(S) > 1.5) under appropriate mobile phases and temperatures. Using Sino-Chiral OJ, 14 PCBs could be baseline-separated, while only one and nine PCBs could be completely separated using Chiralpak IB and Chiralcel OD, respectively. The influence of column temperature was studied for the optimization of resolution, as well as for the type and percentage of organic modifier in the mobile phase. The resolution decreased as the temperature increased in the range of 26-40 °C in which the enantiomeric separations were an enthalpy-driven process. The addition of modifiers in the mobile phase decreased the resolution of the PCB enantiomers, but it clearly shortened their retention time. These separation results indicate that SFC is a promising chromatographic technique for chiral separation and enantiopure standard preparation.  相似文献   

2.
Polysaccharide CSPs are recognized widely in chiral chromatography but the introduction of immobilized phases (Chiralpak IA, Chiralpak IB and Chiralpak IC columns) is a remarkable achievement. The immobilized CSPs can be used with organic, normal and reversed phase modes; even with prohibited solvents too (tetrahydrofuran, chlorofom, dichloromethane, acetone, 1,4-dioxane, ethylacetate, and certain other ethers). Their susceptibilities to work with a wide range of solvents have increased the range of applications including chiral recognition mechanisms. Besides, these are also useful for monitoring the progress of stereo-specific reactions; normally need prohibited solvents. The present review describes the various aspects of commercial available immobilized chiral columns. Attempts have been made to discuss immobilized polysaccharides CSPs, immobilized vs coated CSPs, comparison of immobilized CSPs, method development, optimization, chiral recognition mechanism and applications. The chiral recognition capabilities of commercial columns were in the order of Chiralpak IA > Chiralpak IB > Chiralpak IC columns; but complimentary to each other. Of course, these CSPs are not fully developed and need more advancements and applications. Definitely, the future of immobilized CSPs is quite better. Hopefully, in the coming years they will be the choice of the chromatographers for chiral separations in liquid chromatography.  相似文献   

3.
Enantiomeric separation of furanocoumarins and dihydroflavones compounds were systematically studied in the normal-phase mode using four different polysaccharide-type chiral stationary phases, namely, Chiralpak IA, Chiralpak IC, Chiralpak IG, and Chiralpak IK-3 by high-performance liquid chromatography. The effect of alcohol modifiers and alcohol content on enantiomeric separation was evaluated for the separation of furanocoumarins and dihydroflavones. All the eight compounds have achieved baseline separation with the resolutions ranging between 1.52 and 23.11. For a better insight into the enantiorecognition mechanisms, thermodynamic analysis was carried out. The mechanisms of chiral recognition have been discussed. Among four chiral columns, Chiralpak IG exhibited the most universal and the best enantioseparation ability toward furanocoumarins and dihydroflavones when used n-hexane-isopropanol and n-hexane-ethanol as mobile phase, respectively. The steric hindrance, hydrogen bonding, and π-π interaction played major roles in chiral recognition on Chiralpak IG. By comparing four chiral columns, this work systematically analyzed the separation methods of furanocoumarins and dihydroflavones for the first time and reported some active chiral ingredients of traditional Chinese medicine that have never been separated, which provided a further insight into the enantioseparation of furanocoumarins and dihydroflavones on chiral stationary phases.  相似文献   

4.
The enantiomeric separations of five chiral pesticides, diclofopmethyl, 1; benalaxy, 2; acetofenate, 3; myclobutanil, 4; and difenoconazole, 5, were conducted on a Chiralpak IB-H column by a packed-column supercritical fluid chromatography (p-SFC). All compounds, except difenoconazole and myclobutanil, were well resolved within 10 min. As the mobile phase polarity decreased through changing the percentage and the type of alcohol modifiers in the supercritical carbon dioxide (CO(2)), the retention time, the separation factors, and the resolution increased. However, based on the retention time and the resolution, the optimized separations were obtained with the mobile phase containing 10% 2-propanol for diclofop-methyl 1; benalaxy, 2; myclobutanil, 4; difenoconazole, 5; and containing 3% 2-propanol for acetofenate, 3. The optimized separation temperature was at 35°C under the supercritical fluid condition. The π-π interactions and the hydrogen bonding interactions between Chiralpak IB-H CSP and the analytes might be the main chiral discriminations on enantioseparation of these five pesticides.  相似文献   

5.
The solvent versatility of Chiralpak IA, a new chiral stationary phase (CSP) containing amylose tris(3,5-dimethylphenylcarabamate) immobilized onto silica gel, is investigated for the enantioselective separation of a set of cyclopropane derivatives using ethyl acetate or dichloromethane (DCM) as non-standard mobile phase eluent and diluent, respectively in high-performance liquid chromatography (HPLC). A comparison of the separation of cyclopropanes on both immobilized and coated amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA and Chiralpak AD, respectively) in HPLC using a mixture of n-hexane/2-propanol (90/10 and 99/1, v/v) as mobile phase with a flow rate of 0.5 ml/min and UV detection at 254 nm, is demonstrated. The optimized method of separation is used for an online HPLC monitoring for the Rh(II)-catalyzed asymmetric intermolecular cyclopropanations in dichloromethane. Direct analysis techniques without further purification, workup or removal of dichloromethane were summarized. The method provides an easy and direct determination of the enantiomeric excess of the cyclopropanes and selectivity of the catalyst used without any further work up.  相似文献   

6.
A pair of cis-trans isomeric chiral stationary phases (CSPs) derived from (S)-1-(1-naphtyl)ethylamine was prepared. The chromatographic behaviours on both CSPs with regard to the resolution of enantiomeric amino acids, amino alcohols, amines, and carboxylic acid were studied. According to separation factors, the trans-CSP showed better chiral recognition ability for the separation of most analytes chosen in this study. Three homologous series of the alkyl esters of racemic amino acids were resolved on both CSPs using n-hexane-2-propanol and n-hexane-dichloromethane as mobile phases. The trans-CSP also showed better enantioselectivity for the resolution of homologues. A reverse of elution order was observed for the resolution of the homologous series of phenylglycine alkyl esters on both CSPs. It was found that the relationship between the separation factor and the alkyl chain length of the ester homologous series depended upon the components of mobile phase. A higher magnitude of difference between the two CSPs in enantioselectivity for the resolution of a given homologue was obtained when n-hexane-dichloromethane was used as a mobile phase. A chiral recognition process, in which steric repulsion, face-to-face π-π interaction, face-to-edge π-π interaction and hydrogen bonding interaction were involved, was also suggested to describe the separation of enantiomeric homologues on both CSPs. This study clearly indicates that the chiral resolution is influenced by the geometry of the double bond in a CSP.  相似文献   

7.
The preparation of novel brush-type chiral cation-exchange materials based on de novo designed synthetic low molecular mass selectors (SOs) and their evaluation for enantioselective separation of chiral amines by HPLC are presented. The SO as the functional unit for enantioselectivity contains a beta-aminocyclohexanesulfonic acid moiety and is readily accessible via straightforward synthesis in both enantiomeric forms yielding chiral stationary phases (CSPs) with opposite configurations, CSPs 1 and 2, and reversed elution orders. For the evaluation of these novel CSPs by HPLC a sound set of chiral amines, mainly amino-alcohol type drug molecules, was selected. The chromatographic evaluations were carried out using polar organic mobile phase conditions. All of the analytes could be baseline separated, compared to common CSPs in parts with excellent peak efficiencies (up to 70000 theoretical plates per meter for the second eluted enantiomer). A number of experimental parameters have been varied to look at and prove the underlying ion-exchange process on CSPs 1 and 2, and to reveal suitable conditions for their operation. In this context, the influence of proton activity in the mobile phase and the effects of varying concentration and type of the counterion as well as type of co-ion and of bulk solvent components were thoroughly investigated.  相似文献   

8.
The HPLC enantioseparation of nine atropisomeric 3,3′,5,5′‐tetrasubstituted‐4,4′‐bipyridines was performed in normal and polar organic (PO) phase modes using two immobilized polysaccharide‐based chiral columns, namely, Chiralpak IA and Chiralpak IC. The separation of all racemic analytes, the effect of the chiral selector, and mobile phase (MP) composition on enantioseparation and the enantiomer elution order (EEO) were studied. The beneficial effect of nonstandard solvents, such as tetrahydrofuran (THF), dichloromethane (DCM), and methyl t‐butyl ether on enantioseparation was investigated. All selected 4,4′‐bipyridines were successfully enantioseparated on Chiralpak IA under normal or PO MPs with separation factors from 1.14 to 1.70 and resolutions from 1.3 to 6.5. Two bipyridines were enantioseparated at the multimilligram level on Chiralpak IA. Differently, Chiralpak IC was less versatile toward the considered class of compounds and only five bipyridines out of nine could be efficiently separated. In particular, on these columns, the ternary mixture n‐heptane/THF/DCM (90:5:5) as MP had a positive effect on enantioseparation. An interesting phenomenon of reversal of the EEO depending on the composition of the MP for the 3,3′‐dibromo‐5,5′‐bis‐(E)‐phenylethenyl‐4,4′‐bipyridine along with an exceptional enantioseparation for the 3,3′‐dibromo‐5,5′‐bis‐ferrocenylethynyl‐4,4′‐bipyridine (α = 8.33, Rs = 30.6) were observed on Chiralpak IC.  相似文献   

9.
HPLC enantiomeric separations of a wide variety of racemic analytes was evaluated using chiral stationary phases (CSPs) based on the macrocyclic glycopeptides teicoplanin (T), teicoplanin aglycone (TAG), and methylated teicoplanin aglycone (Me-TAG) in two different mobile phase modes, i.e., the RP mode and the polar organic (PO) mode. Comparison of the enantiomeric separations using Chirobiotic T, Chirobiotic TAG, and the methylated form of TAG were conducted in order to gain a better understanding of the roles of the polar functional groups on the CSP. Substantial effects due to the cleavage of saccharides and/or methylation on chiral separations were observed in both separation modes. Improved separation efficiencies for many acidic analytes were obtained by methylating the H-bonding groups of TAG. These groups were believed to be a contributing factor to band broadening on TAG due to their negative effect on mass transfer between the stationary phase and mobile phase. Ionic/dipolar interactions between the carboxylate group of the analytes and the amine groups on T, TAG, or Me-TAG are important for chiral discrimination. Therefore, analytes possessing a carboxyl group are good candidates for successful separations on these CSPs. Hydrophobic interactions are important for enantiomeric separations in the RP mode where the H-bonding interactions between analytes and the chiral selectors are relatively weak. Me-TAG offers higher hydrophobicity, which can accentuate the interactions of analytes with hydrophobic moieties, but these interactions are not necessarily stereoselective. In the PO mobile phase, electrostatic/dipolar interactions between polar functional groups are the dominating interactions in chiral recognition. Another important factor is steric fit, which could be changed with every modification of the T structure. Therefore, substantial changes of enantioseparations were obtained within this studied group of CSPs. The PO mode was shown to be the most powerful mobile phase mode for enantiomeric separations on T-based stationary phases, mainly due to the improved efficiency. Methylation of the TAG proved to be a very useful tool for investigating the chiral recognition mechanism for this group of chiral selectors.  相似文献   

10.
Two novel chiral stationary phases (CSPs) were prepared by bonding chiral imidazoliums on the surface of silica gel. The chiral imidazoles were derivatized from chiral amines, 1-phenylethylamine and 1-(1-naphthyl)ethylamine. The obtained CSPs were characterized by Fourier Transform Infrared (FT-IR) spectroscopy and elemental analysis (EA), demonstrating the bonding densities of CSP 1 and CSP 2 were 0.43 mmol g−1 and 0.40 mmol g−1, respectively. These two CSPs could be used to availably separate 8 pharmaceuticals, 7 mandelic acid/its derivatives, 2 1-phenylethylamine derivatives, 1 1,1′-bi-2-naphthol, and 1 camphorsulfonic acid in high-performance liquid chromatography (HPLC). It is found that CSP 1 could effectively enantioseparate most chiral analytes, especially the acidic components, while CSP 2 could enantiorecognize all chiral analytes, although a number of components did not achieve baseline separation. Additionally, the effects of mobile phase composition, mobile phase pH and salt content, chiral selector structures, and analyte structures on the enantiorecognitions of the two CSPs were investigated. It is found that high acetonitrile content in mobile phases was conducive to enantiorecognition. Mobile phase pH and salt content could alter the retention behaviors of different enantiomers of the same chiral compound, resulting in better enantioresolution. Moreover, both chiral selector structures and substituted groups of analytes played a significant role in the separation of chiral solutes.  相似文献   

11.
黄虎  金京玉  李元宰 《色谱》2009,27(4):467-471
考察了多糖类手性固定相在含有酸性或碱性添加剂的流动相下高效液相色谱法拆分β受体阻滞剂对映体的效果。色谱条件: 流动相为10%~30%(体积分数,下同)乙醇-正己烷(含0.1%三氟乙酸)和10%~30%乙醇-正己烷(含0.1%三乙胺),流速1.0 mL/min,紫外检测波长254 nm。结果表明,在直链淀粉-三(3,5-二甲基苯基氨基甲酸酯)衍生物手性固定相(Chiralpak AD和Chiralpak IA)上拆分β受体阻滞剂对映体,酸性添加剂的流动相体系与碱性添加剂的流动相体系相比,碱性添加剂的流动相的拆分效果比酸性添加剂的流动相要好。而在纤维素-三(3,5-二甲基苯基氨基甲酸酯)衍生物的手性固定相(Chiralcel OD和Chiralpak IB)上分离β受体阻滞剂,比较酸性添加剂的流动相与碱性添加剂的流动相的拆分效果,发现酸性添加剂的流动相条件下对映体的保留减弱,但对映体的选择性增大,特别是在Chiralcel OD上,酸性添加剂的流动相体系对对映体的选择性非常理想,而且随着流动相中酸性添加剂含量的增加,β受体阻滞剂对映体的分离效果更佳。  相似文献   

12.
A direct HPLC enantioseparation of three new chiral oxadiazoline derivatives endowed with potential MAO-B inhibitory activity was accomplished on the immobilised Chiralpak IA chiral stationary phase. Multi-mg amounts of enantiomers with high enantiomeric purity (ee ≥ 98%) were rapidly collected using pure dichloromethane as eluent. The absolute configuration and chiroptical properties of the enantiomers isolated at semipreparative scale were exhaustively determined.  相似文献   

13.
建立了以直链淀粉衍生物为手性固定相的高效液相色谱-串联质谱(HPLC-MS/MS)直接拆分普萘洛尔、美托洛尔、阿罗洛尔和卡维地洛4种β-受体阻滞剂对映体的方法。考察了手性固定相的种类、流动相改性剂和添加剂的体积分数、柱温和流速等对4种药物对映体分离的影响。结果表明:在Chiralpak AD-H手性色谱柱上,在正己烷-乙醇-二乙胺(20∶80∶0.03,v/v/v)为流动相、流速0.550 mL/min、柱温40℃的条件下,普萘洛尔、美托洛尔、阿罗洛尔和卡维地洛对映体均达到基线分离,分离度分别为1.37、1.80、2.09和4.70。通过热力学研究及对映体结构分析对拆分机理进行了探讨,发现4种药物对映体的手性拆分均为焓驱动过程,而固定相的手性空腔对不同药物的拆分影响较大。研究结果为β-受体阻滞剂的深入研究提供了参考方法。  相似文献   

14.
本文运用涂敷型(Chiralpak AD-H)和键合型(Chiralpak IA)两种淀粉类手性固定相高效液相色谱法,进行了新型含苯并噻唑α-氨基膦酸酯类化合物的手性分离。从色谱分离的保留因子(k)、分离系数(α)和分离度(Rs)三个方面考察了两种类型色谱柱的分离性能,上述化合物在Chiralpak IA柱上能够得到较好的基线分离。同时,讨论了温度、流动相极性和目标分析物的结构等因素对Chiralpak IA柱分离性能的影响。由于键合型固定相较稳定的性能,使某些非常规的溶剂(如THF)成功地应用于手性α-氨基膦酸酯类化合物的分离。  相似文献   

15.
Enantiomeric separation of two aromatic α-substituted alanine esters was achieved on two commercially available polysaccharide-based chiral stationary phases (CSPs): amylose tris(3,5-dimethylphenylcarbamate) (ADMPC) and cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC). The interactions between enantiomeric analytes and the CSPs were investigated using chromatographic methods and vibration circular dichroism (VCD). The two analytes differ on the aromatic portion of the molecules where one analyte has a π-acceptor aromatic ring (1) while the other has a π-donor aromatic ring (2). When an ADMPC CSP was employed, an increase in the polarity of the mobile phase leads to a reversal of the elution order for the two enantiomers of 1. The elution order of compound 2 was not affected by the polarity of the mobile phase. In order to gain an understanding of these phenomena, the enantiomeric separation of 1 and 2 was also performed on the CDMPC CSP. Interestingly, no reversal of elution order was observed upon the chromatographic separation of both pairs of enantiomers of compounds 1 and 2 upon increasing the solvent polarity when a CDMPC CSP was utilized. To understand the underlying mechanism governing these chiral separations, VCD was applied to study the structure of the ADMPC and CDMPC polymers and their conformational behaviors under chromatographic conditions. For the first time the conformations of the side chains of both polymers were revealed based on the VCD spectra along with DFT calculations. Furthermore, the interactions between the two analytes and the two CSPs were directly probed by VCD. By comparing the spectral differences of the two CSPs in the presence of the two analytes, the detailed interactions involving different functional groups associated with the chiral recognition were elucidated and thus explained the unusual reversal of elution order associated with increasing solvent polarity.  相似文献   

16.
Two chiral stationary phases derived from derivatized amylose (Chiralpak AD-H and Chiralpak IA) have been used to separate the enantiomers of new diethyl benzamidoarylmethylphosphonates. The data obtained indicate that all the studied compounds could be easily baseline resolved on both columns. Owing to the different techniques involved in their preparation, the two stationary phases differ in their abilities to effect enantiomeric separation. The semi-preparative separation of all compounds was executed successfully in n-hexane/EtOH on the new immobilized Chiralpak IA column. The analytical assessment of the enantiomeric excess values of all collected fractions was higher than 97%. The stereochemical configuration for the F1 fraction of a diethyl benzamidoarylmethylphosphonate was determined by X-ray diffraction structure analysis.  相似文献   

17.
The enantiomeric separation of a set of 30 new chiral furan derivatives has been achieved on native and derivatized beta-cyclodextrin stationary phases using high performance liquid chromatography (HPLC). The hydroxypropyl-beta-cyclodextrin (Cyclobond RSP), the 2,3-dimethyl-beta-cyclodextrin (Cyclobond DM), and the acetyl-beta-cyclodextrin (Cyclobond AC) stationary phases are the most effective chiral stationary phases (CSPs) for the separation of these racemates in the reverse phase mode. No enantioseparations have been observed on the native beta-cyclodextrin chiral stationary phase (Cyclobond I 2000) and only a few separations have been attained on the S-naphthylethyl carbamate beta-cyclodextrin (Cyclobond SN) and 3,5-dimethylphenyl carbamate beta-cyclodextrin (Cyclobond DMP) chiral stationary phases in the reverse phase mode. The polar organic and the normal phase mode on these CSPs are not effective for separation of these compounds. The characteristics of the analytes, including steric bulk, hydrogen bonding ability, and geometry, play an important role in the chiral recognition process. The pH affects the enantioseparation of compounds with ionizable groups and the addition of 0.5% methyl tert-butyl ether to the mobile phase significantly enhances the separation efficiency for some highly retained compounds.  相似文献   

18.
The direct HPLC enantioseparation of a novel series of chiral pyridazin-3(2H)-one derivatives with α-aminophosphonate moiety was performed on two immobilized polysaccharide chiral stationary phases (Chiralpak IA, Chiralpak IC) using n-hexane (n-Hex)/dichloromethane (DCM) mobile phase with 5% alcohol additive. Good baseline separation of the enantiomers was achieved using amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA) on analytical scale. The analytical method was further scaled up to semi-preparative loading to obtain small amounts of both the enantiomers of pyridazin-3(2H)-one derivative. The semi-preparative resolution of all compounds was successfully achieved with n-hexane/dichloromethane/ethanol (EtOH) as mobile phase using a semi-preparative Chiralpak IA column. The first fractions were isolated with purities of >99.9% (enantiomeric excess (e.e.), and the second fractions were obtained with purities of >98.2% (enantiomeric excess). The assignment of the absolute configuration was established for the F1 fraction of compound a-2 by single-crystal X-ray diffraction method.  相似文献   

19.
Ghanem A  Hoenen H  Aboul-Enein HY 《Talanta》2006,68(3):602-609
A direct liquid chromatographic enantioselective separation of a set of β-blocker enantiomers on the new immobilized and conventional coated amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA and Chiralpak AD, respectively) was studied using methanol as mobile phase and ethanolamine as an organic modifier (100:0.1, v/v). The separation, retention and elution order of the enantiomers on both columns under the same conditions were compared. The effect of the immobilization of the amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase on silica (Chiralpak IA) on the chiral recognition ability was noted when compared to the coated phase (Chiralpak AD) which possesses a higher resolving power than the immobilized one (Chiralpak IA). A few racemates, which were not or poorly resolved on the immobilized Chiralpak IA were most efficiently resolved on the coated Chiralpak AD. However, the immobilized phase withstand solvents like dichloromethane when used as an eluent or as a dissolving agent for the analyte. The versatility of the immobilized Chiralpak IA in monitoring reactions performed in dichloromethane using direct analysis techniques without further purification, workup or removal of dichloromethane was studied on a representative example consisting of the lipase-catalyzed irreversible transesterification of a β-blocker using either vinylacetate or isopropenyl acetate as acyl donor in dichloromethane as organic solvent.  相似文献   

20.
Enantiomeric separation of six β-adrenergic blockers was systematically studied for the first time on a polysaccharide-based chiral stationary phase, i.e. Chiralpak IB, under the normal-phase mode. The effect of alcohol modifiers, alcohol content and basic additive on enantiomeric separation was evaluated and optimized. Under the optimal conditions, the enantiomers of atenolol, bevantolol, cartelol, esmolol, metoprolol and propranolol were all baseline resolved with resolutions of 1.50, 8.56, 2.05, 2.11, 3.56 and 4.02, respectively. Additionally, molecular docking was tested to explain chiral recognition mechanisms of this set of the drug enantiomers on Chiralpak IB. The details of the various interactions affecting enantiomeric separation were confirmed from the molecular level and the modeling data were in agreement with the chromatographic results concerning the enantioselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号