首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A low‐temperature ammonia synthesis process is required for on‐site synthesis. Barium‐doped calcium amide (Ba‐Ca(NH2)2) enhances the efficacy of ammonia synthesis mediated by Ru and Co by 2 orders of magnitude more than that of a conventional Ru catalyst at temperatures below 300 °C. Furthermore, the presented catalysts are superior to the wüstite‐based Fe catalyst, which is known as a highly active industrial catalyst at low temperatures and pressures. Nanosized Ru–Ba core–shell structures are self‐organized on the Ba‐Ca(NH2)2 support during H2 pretreatment, and the support material is simultaneously converted into a mesoporous structure with a high surface area (>100 m2 g−1). These self‐organized nanostructures account for the high catalytic performance in low‐temperature ammonia synthesis.  相似文献   

2.
We demonstrate the facile microwave‐assisted synthesis of a porous organic framework 1 and the sulfonated solid ( 1S ) through postsubstitution. Remarkably, the conductivity of 1S showed an approximately 300‐fold enhancement at 30 °C as compared to that of 1 , and reached 7.72×10−2 S cm−1 at 80 °C and 90 % relative humidity. The superprotonic conductivity exceeds that observed for any conductive porous organic polymer reported to date. This material, which is cost‐effective and scalable for mass production, also revealed long‐term performance over more than 3 months without conductivity decay.  相似文献   

3.
Enhancing thermal and chemical durability and increasing surface area are two main directions for the construction and improvement of the performance of porous hydrogen‐bonded organic frameworks (HOFs). Herein, a hexaazatriphenylene (HAT) derivative that possesses six carboxyaryl groups serves as a suitable building block for the systematic construction of thermally and chemically durable HOFs with high surface area through shape‐fitted docking between the HAT cores and interpenetrated three‐dimensional network. A HAT derivative with carboxybiphenyl groups forms a stable single‐crystalline porous HOF that displays protic solvent durability, even in concentrated HCl, heat resistance up to 305 °C, and a high Brunauer–Emmett–Teller surface area [SA(BET)] of 1288 m2 g−1. A single crystal of this HOF displays anisotropic fluorescence, which suggests that it would be applicable to polarized emitters based on robust functional porous materials.  相似文献   

4.
A new superbase, the cyclic trimeric phosphazene base (CTPB), was prepared with high yield and purity. In the presence of alcohol, the CTPB serves as a highly efficient organocatalyst for ring‐opening polymerization of the “non‐polymerizable” γ‐butyrolactone to offer well‐defined poly(γ‐butyrolactone) with high conversions (up to 98 %) at −60 °C. The produced polymers have high molecular weights (up to 22.9 kg mol−1) and low polydispersity distributions (1.27–1.50). NMR analysis of initiation process and the structural analysis of resulting polymers by MALDI‐TOF suggest a mechanism involving an activating initiator which leads only to linear polymers with BnO/H chain ends.  相似文献   

5.
Three‐dimensional covalent organic frameworks (3D COFs) are promising crystalline materials with well‐defined structures, high porosity, and low density; however, the limited choice of building blocks and synthetic difficulties have hampered their development. Herein, we used a flexible and aliphatic macrocycle, namely γ‐cyclodextrin (γ‐CD), as the soft struts for the construction of a polymeric and periodic 3D extended network, with the units joined via tetrakis(spiroborate) tetrahedra with various counterions. The inclusion of pliable moieties in the robust open framework endows these CD‐COFs with dynamic features, leading to a prominent Li ion conductivity of up to 2.7 mS cm−1 at 30 °C and excellent long‐term Li ion stripping/plating stability. Exchanging the counterions within the pores can effectively modulate the interactions between the CD‐COF and CO2 molecules.  相似文献   

6.
Heteropoly acids (HPAs) are unique materials with interesting properties, including high acidity and proton conductivity. However, their low specific surface area and high solubility in polar solvents make them unattractive for catalytic or energy applications. This obstacle can be overcome by creating nanoporosity within the HPA. We synthesized mesoporous phosphotungstic acid (mPTA) with a spherical morphology through the self‐assembly of phosphotungstic acid (PTA) with a polymeric surfactant as stabilized by KCl and hydrothermal treatment. The mPTA nanostructures had a surface area of 93 m2 g?1 and a pore size of 4 nm. Their high thermal stability (ca. 450 °C) and lack of solubility in ethylene carbonate/diethyl carbonate (EC/DEC) electrolyte are beneficial for lithium‐ion batteries (LIBs). Optimized mPTA showed a reversible capacity of 872 mAh g?1 at 0.1 A g?1 even after 100 cycles for LIBs, as attributed to a super‐reduced state of HPA and the storage of Li ions within the mesochannels of mPTA.  相似文献   

7.
The structure of Cs3RESi6O15, where RE=Dy–Lu, Y, In, is unusual in that it contains octahedrally coordinated rare‐earth ions; their relative orientation dictates the structure, as they rotate about the c‐axis supported by the cyclic Si6O15 framework. The repeat unit of the rotation is eight units generating a very long (ca. 57 Å) unit cell axis. This unusual repeat unit is created by the structural flexibility of the hexasilicate ring, which is in turn affected by the size of the rare earth ion as well as the size of alkali ion residing within the silicate layers. Previous work showed for the smaller Sc3+ ion, the rotation of the octahedra is not sufficient to achieve closure at an integral repeat unit and an incommensurate structure results. The products are prepared as large, high quality single crystals using a high‐temperature (650 °C) hydrothermal method with CsOH and F mineralizers. The presence of fluoride is essential to the formation of the product.  相似文献   

8.
The development of low‐cost, efficient, and stable electrocatalysts for the oxygen reduction reaction (ORR) is desirable but remains a great challenge. Herein, we made a highly reactive and stable isolated single‐atom Fe/N‐doped porous carbon (ISA Fe/CN) catalyst with Fe loading up to 2.16 wt %. The catalyst showed excellent ORR performance with a half‐wave potential (E 1/2) of 0.900 V, which outperformed commercial Pt/C and most non‐precious‐metal catalysts reported to date. Besides exceptionally high kinetic current density (J k) of 37.83 mV cm−2 at 0.85 V, it also had a good methanol tolerance and outstanding stability. Experiments demonstrated that maintaining the Fe as isolated atoms and incorporating nitrogen was essential to deliver the high performance. First principle calculations further attributed the high reactivity to the high efficiency of the single Fe atoms in transporting electrons to the adsorbed OH species.  相似文献   

9.
Zeolite EU‐12, the framework structure of which has remained unsolved during the past 30 years, is synthesized at a specific SiO2/Al2O3 ratio using choline as an organic structure‐directing agent, with both Na+ and Rb+ ions present. Synchrotron powder X‐ray diffraction and Rietveld analyses reveal that the EU‐12 structure has a two‐dimensional 8‐ring channel system. Among the two distinct 8‐ring (4.6×2.8 and 5.0×2.7 Å) channels along c axis, the smaller one interconnects with the sinusoidal 8‐ring (4.8×3.3 Å) channel along a axis. The other large one is simply linked up with the sinusoidal channel by sharing 8‐rings (4.8×2.6 Å) in the ac plane. The proton form of EU‐12 was found to show a considerably higher ethene selectivity in the low‐temperature dehydration of ethanol than H‐mordenite, the best catalyst for this reaction.  相似文献   

10.
A series of branched/crosslinked sulfonated polyimide (B/C‐SPI) membranes were prepared and evaluated as proton‐conducting ionomers based on the new concept of in situ crosslinking from sulfonated polyimide (SPI) oligomers and triamine monomers. Chemical branching and crosslinking in SPI oligomers with 1,3,5‐tris(4‐aminophenoxy)benzene as a crosslinker gave the polymer membranes very good water stability and mechanical properties under an accelerated aging treatment in water at 130 °C, despite their high ion‐exchange capacity (2.2–2.6 mequiv g?1). The resulting polymer electrolytes displayed high proton conductivities of 0.2–0.3 S cm?1 at 120 °C in water and reasonably high conductivities of 0.02–0.03 S cm?1 at 50% relative humidity. In a single H2/O2 fuel‐cell system at 90 °C, they exhibited high fuel‐cell performances comparable to those of Nafion 112. The B/C‐SPI membranes also displayed good performances in a direct methanol fuel cell with methanol concentrations as high as 50 wt % that were superior to those of Nafion 112. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3751–3762, 2006  相似文献   

11.
Visible‐light‐driven photoreduction of CO2 to energy‐rich chemicals in the presence of H2O without any sacrifice reagent is of significance, but challenging. Herein, Eosin Y‐functionalized porous polymers (PEosinY‐N, N=1–3), with high surface areas up to 610 m2 g?1, are reported. They exhibit high activity for the photocatalytic reduction of CO2 to CO in the presence of gaseous H2O, without any photosensitizer or sacrifice reagent, and under visible‐light irradiation. Especially, PEosinY‐1 derived from coupling of Eosin Y with 1,4‐diethynylbenzene shows the best performance for the CO2 photoreduction, affording CO as the sole carbonaceous product with a production rate of 33 μmol g?1 h?1 and a selectivity of 92 %. This work provides new insight for designing and fabricating photocatalytically active polymers with high efficiency for solar‐energy conversion.  相似文献   

12.
Flow batteries (FBs) are one of the most promising stationary energy‐storage devices for storing renewable energy. However, commercial progress of FBs is limited by their high cost and low energy density. A neutral zinc–iron FB with very low cost and high energy density is presented. By using highly soluble FeCl2/ZnBr2 species, a charge energy density of 56.30 Wh L−1 can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe3+/Fe2+. The results indicated that an energy efficiency of 86.66 % can be obtained at 40 mA cm−2 and the battery can run stably for more than 100 cycles. Furthermore, a low‐cost porous membrane was employed to lower the capital cost to less than $ 50 per kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc–iron FB is a promising candidate for stationary energy‐storage applications.  相似文献   

13.
The introduction of a certain proportion of selenium into sulfur‐based cathodes is an effective strategy for enhancing the integrated battery performance. However, similar to sulfur, selenium sulfide cathodes suffer from poor cycling stability owing to the dissolution of reaction intermediate products. In this study, to exploit the advantages of SeS2 to the full and avoid its shortcomings, we designed and synthesized a hollow mesoporous carbon@titanium nitride (HMC@TiN) host for loading 70 wt % of SeS2 as a cathode material for Li–SeS2 batteries. Benefiting from both physical and chemical entrapment by hollow mesoporous carbon and TiN, the HMC@TiN/SeS2 cathode manifests high utilization of the active material and excellent cycling stability. Moreover, it exhibits promising areal capacity (up to 4 mAh cm−2) with stable cell performance in the high‐mass‐loading electrode.  相似文献   

14.
The efficient fixation of excess CO2 from the atmosphere to yield value‐added chemicals remains crucial in response to the increasing levels of carbon emission. Coupling enzymatic reactions with electrochemical regeneration of cofactors is a promising technique for fixing CO2, while producing biomass which can be further transformed into biofuels. Herein, a bioelectrocatalytic system was established by depositing crystallites of a mesoporous metal–organic framework (MOF), termed NU‐1006, containing formate dehydrogenase, on a fluorine‐doped tin oxide glass electrode modified with Cp*Rh(2,2′‐bipyridyl‐5,5′‐dicarboxylic acid)Cl2 complex. This system converts CO2 into formic acid at a rate of 79±3.4 mm h?1 with electrochemical regeneration of the nicotinamide adenine dinucleotide cofactor. The MOF–enzyme composite exhibited significantly higher catalyst stability when subjected to non‐native conditions compared to the free enzyme, doubling the formic acid yield.  相似文献   

15.
The polymerization of ε‐caprolactone (ε‐CL) has been assessed in water using various Brønsted acids as catalysts. The reaction was found to be quantitative at 100 °C, leading to number–average molecular weights up to 5000 g mol?1. The Brønsted acid‐catalyzed polymerization of ε‐CL in water was further conducted in the presence of water‐soluble polysaccharides thereby affording graft copolymers. The approach enables an easy, mild access to dextran hydroxyesters. For low degree of substitution, the latter self‐assembles in water to form nanoparticles. Poly(ε‐CL)‐graft‐methylcellulose copolymers can also be obtained via a similar approach. It is noteworthy that the methodology reported herein is a one‐step route to poly(ε‐CL)‐graft‐water‐soluble polysaccharides, operating in mild conditions, that is, at low temperatures, using readily available metal‐free catalysts and water as a solvent. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2139–2145  相似文献   

16.
To efficiently capture the toxic uranyl ions (UO22+), a new hierarchical micro‐macroporous metal–organic framework was prepared under template‐free conditions, featuring interconnected multi‐nanocages bearing carbonyl groups derived from a semi‐rigid ligand. The material exhibits an unusually high UO22+ sorption capacity of 562 mg g?1, which occurs in an intriguing two‐steps process, on the macropore‐based crystal surface and in the inner nanocages. Notably, the latter is attributed to the cooperative interplay of the shrinkage of the host porous framework induced by uranyl accommodation and the free carbonyl coordination sites, as shown by both single‐crystal X‐ray diffraction and a red‐shift of the infrared [O=UVI=O]2+ antisymmetric vibration band.  相似文献   

17.
The steric bulk of the well‐known DIPPBDI ligand (CH[C(CH3)N‐DIPP]2, DIPP=2,6‐diisopropylphenyl) was increased by replacing isopropyl for isopentyl groups. This very bulky DIPePBDI ligand could not stabilize the radical species (DIPePBDI)Mg.: reduction of (DIPePBDI)MgI with Na gave (DIPePBDI)2Mg2 with a rather long Mg‐Mg bond of 3.0513(8) Å. Addition of TMEDA prior to reduction gave complex (DIPePBDI)2Mg2(C6H6), which could also be obtained as its THF adduct. It is speculated that combination of a bulky spectator ligand and TMEDA prevents dimerization of the intermediate MgI radical, which then reacts with the benzene solvent. Complex (DIPePBDI)2Mg2(C6H6), which formally contains the anti‐aromatic anion C6H62?, reacted with tBuOH as a Brønsted base to 1,3‐ and 1,4‐cyclohexadiene and with H2 as a two electron donor to (DIPePBDI)2Mg2H2 and C6H6. It also reductively cleaved the C?F bond in fluorobenzene and gave (DIPePBDI)MgPh, (DIPePBDI)MgF, and C6H6.  相似文献   

18.
Light‐emitting diodes break barriers of size and performance for displays. With devices becoming smaller, the materials also need to get smaller. Chromium(III)‐doped oxide phosphors, which emit near‐infrared (NIR) light, have recently been used in small electronic devices. In this work, mesoporous silica nanoparticles were used as nanocarriers. The nanophosphor ZnGa2O4:Cr3+,Sn4+ formed in the mesopore after sintering. Good dispersity and morphology were performed with average diameters of 71±7 nm. It emitted light at 600–850 nm; the intensity was optimized by tuning the doping ratio of Cr3+ and Sn4+. Meanwhile, the light conversion efficiency increased from 7.8 % to 37 % and the molar concentration increased from 0.125 m to 0.5 m . The higher radiant flux of 3.3 mW was obtained by operating an input current of 45 mA. However, the NIR nanophosphor showed good performance on mini light‐emitting diode chips.  相似文献   

19.
Self‐assembled crystalline porous organic salts (CPOSs) formed by an acid–base combination and with one‐dimensional polar channels containing water molecules have been synthesized. The water content in the channels of the porous salts plays an important role in the proton conduction performance of the materials. The porous salts described in this study feature high proton conductivity at ambient conditions and can reach as high as 2.2×10−2 S cm−1 at 333 K and under high humid conditions. This is among the best conductivity values reported to date for porous materials, for example, metal–organic frameworks and hydrogen‐bonded organic frameworks. These materials exhibiting permanent porosity represent a group of porous materials and may find interesting applications in proton‐exchange membrane fuel cells.  相似文献   

20.
A novel sulfonated diamine monomer, 2,2′‐bis(p‐aminophenoxy)‐1,1′‐binaphthyl‐6,6′‐disulfonic acid (BNDADS), was synthesized. A series of sulfonated polyimide copolymers containing 30–80 mol % BNDADS as a hydrophilic component were prepared. The copolymers showed excellent solubility and good film‐forming capability. Atomic force microscopy phase images clearly showed hydrophilic/hydrophobic microphase separation. The relationship between the proton conductivity and degree of sulfonation was examined. The sulfonated polyimide copolymer with 60 mol % BNDADS showed higher proton conductivity (0.0945–0.161 S/cm) at 20–80 °C in liquid water. The membranes exhibited methanol permeability from 9 × 10?8 to 5 × 10?7 cm2/s at 20 °C, which was much lower than that of Nafion (2 × 10?6cm2/s). The copolymers were thermally stable up to 300 °C. The sulfonated polyimide copolymers with 30–60 mol % BNDADS showed reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 40 mol % BNDADS was 80.6 MPa under high moisture conditions. The optimum concentration of BNDADS was found to be 60 mol % from the viewpoint of proton conductivity, methanol permeability, and membrane stability. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 222–231, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号