首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electrophoresis》2018,39(19):2398-2405
The enantioseparation of twelve pairs of structurally related 1‐aryl‐1‐indanone derivatives was studied in the normal‐phase mode using three different polysaccharide‐type chiral stationary phases, namely Chiralpak IB, Chiralpak IC, and Chiralpak ID. n‐Hexane/2‐propanol and n‐hexane/ethanol were employed as mobile phases. Among all the investigated chiral columns, Chiralpak IC exhibited the most universal and the best enantioseparation ability toward all the racemates, particularly with the mobile phase composed of n‐hexane/2‐propanol (90/10, v/v). Then the effects of column temperature on retention and enantioselectivity were examined in the range of 25–40°C. Satisfactory enantioseparation was obtained at ambient temperature. The natural logarithm of retention and separation factors (ln k and ln α) versus the reciprocal of absolute temperature (1/T) (Van't Hoff plots) were found to be linear for all racemates, indicating that the retention and separation mechanisms were independent of temperature in the range investigated. Then, the thermodynamic parameters (ΔΔH°, ΔΔS°, and ΔΔG°) were calculated from Van't Hoff plots. These values indicated that the solute transfer from the mobile to stationary phase was enthalpically favorable, and the process of enantioseparation was mainly enthalpy controlled. At last, the impact of small changes in molecular structures of the tested 1‐indanone derivatives on enantioseparation was also discussed.  相似文献   

2.
Enantiomeric separation of furanocoumarins and dihydroflavones compounds were systematically studied in the normal-phase mode using four different polysaccharide-type chiral stationary phases, namely, Chiralpak IA, Chiralpak IC, Chiralpak IG, and Chiralpak IK-3 by high-performance liquid chromatography. The effect of alcohol modifiers and alcohol content on enantiomeric separation was evaluated for the separation of furanocoumarins and dihydroflavones. All the eight compounds have achieved baseline separation with the resolutions ranging between 1.52 and 23.11. For a better insight into the enantiorecognition mechanisms, thermodynamic analysis was carried out. The mechanisms of chiral recognition have been discussed. Among four chiral columns, Chiralpak IG exhibited the most universal and the best enantioseparation ability toward furanocoumarins and dihydroflavones when used n-hexane-isopropanol and n-hexane-ethanol as mobile phase, respectively. The steric hindrance, hydrogen bonding, and π-π interaction played major roles in chiral recognition on Chiralpak IG. By comparing four chiral columns, this work systematically analyzed the separation methods of furanocoumarins and dihydroflavones for the first time and reported some active chiral ingredients of traditional Chinese medicine that have never been separated, which provided a further insight into the enantioseparation of furanocoumarins and dihydroflavones on chiral stationary phases.  相似文献   

3.
The HPLC enantioseparation of nine atropisomeric 3,3′,5,5′‐tetrasubstituted‐4,4′‐bipyridines was performed in normal and polar organic (PO) phase modes using two immobilized polysaccharide‐based chiral columns, namely, Chiralpak IA and Chiralpak IC. The separation of all racemic analytes, the effect of the chiral selector, and mobile phase (MP) composition on enantioseparation and the enantiomer elution order (EEO) were studied. The beneficial effect of nonstandard solvents, such as tetrahydrofuran (THF), dichloromethane (DCM), and methyl t‐butyl ether on enantioseparation was investigated. All selected 4,4′‐bipyridines were successfully enantioseparated on Chiralpak IA under normal or PO MPs with separation factors from 1.14 to 1.70 and resolutions from 1.3 to 6.5. Two bipyridines were enantioseparated at the multimilligram level on Chiralpak IA. Differently, Chiralpak IC was less versatile toward the considered class of compounds and only five bipyridines out of nine could be efficiently separated. In particular, on these columns, the ternary mixture n‐heptane/THF/DCM (90:5:5) as MP had a positive effect on enantioseparation. An interesting phenomenon of reversal of the EEO depending on the composition of the MP for the 3,3′‐dibromo‐5,5′‐bis‐(E)‐phenylethenyl‐4,4′‐bipyridine along with an exceptional enantioseparation for the 3,3′‐dibromo‐5,5′‐bis‐ferrocenylethynyl‐4,4′‐bipyridine (α = 8.33, Rs = 30.6) were observed on Chiralpak IC.  相似文献   

4.
Yang J  Guan J  Pan L  Jiang K  Cheng M  Li F 《Analytica chimica acta》2008,610(2):263-267
Simple and efficient analytical HPLC methods using Chiralpak AS-H as chiral stationary phase were developed for direct enantioseparation of 11 novel phenylethanolamine derivatives. The chromatographic experiments were performed in normal phase mode with n-hexane–ethanol–triethylamine (TEA) as mobile phase. Excellent baseline enantioseparation was obtained for most of compounds. The effects of the concentration of organic modifiers and column temperature were studied for the enantiomeric separation. The mechanism of chiral recognition was discussed based on the relationship between the thermodynamic parameters and structures of compounds. It was found that the enantioseparations were all enthalpy driven, and the tert-butyl groups of compounds had significant influence on the chiral recognition. Trantinterol enantiomers were resolved (Rs = 2.73) within 14 min using n-hexane–ethanol–TEA (98:2:0.1, v/v/v) as mobile phase with a flow rate of 0.8 mL min−1 at 30 °C. The optimized method was validated for linearity, precision, accuracy and stability in solution and proved to be robust. The limits of detection (LOD) and quantification (LOQ) for (+)-trantinterol were 0.15 and 0.46 μg mL−1. The method was applied for enantiomeric impurity determination of (−)-trantinterol bulk samples.  相似文献   

5.
The direct HPLC enantioseparation of a novel series of chiral pyridazin-3(2H)-one derivatives with α-aminophosphonate moiety was performed on two immobilized polysaccharide chiral stationary phases (Chiralpak IA, Chiralpak IC) using n-hexane (n-Hex)/dichloromethane (DCM) mobile phase with 5% alcohol additive. Good baseline separation of the enantiomers was achieved using amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA) on analytical scale. The analytical method was further scaled up to semi-preparative loading to obtain small amounts of both the enantiomers of pyridazin-3(2H)-one derivative. The semi-preparative resolution of all compounds was successfully achieved with n-hexane/dichloromethane/ethanol (EtOH) as mobile phase using a semi-preparative Chiralpak IA column. The first fractions were isolated with purities of >99.9% (enantiomeric excess (e.e.), and the second fractions were obtained with purities of >98.2% (enantiomeric excess). The assignment of the absolute configuration was established for the F1 fraction of compound a-2 by single-crystal X-ray diffraction method.  相似文献   

6.
The polysaccharide chiral stationary phases (CSPs) Chiralcel OD and Chiralpak AD, and the brush-type (R,R)-Whelk-01 chiral stationary phases have been evaluated to separate new synthetic pyrrolylphenylethanoneamine racemic compounds, potentially monoamine oxidase (MAO) inhibitors, under various mobile phase compositions, using various temperatures. The enantioseparation was evaluated by comparing the (R,R)-Whelk-01 column performance with those of Chiralpak AD and Chiralcel OD. Significant differences were observed in their chiral recognition, as revealed from their retention, selectivity, resolution and elution order. Performances of the Chiralpak AD column were superior to those of the Chiralcel OD and (R,R)-Whelk-01 columns. Some of the racemic compounds were resolved by semipreparative chromatography on Chiralpak AD column in order to study the chiroptical proprieties of the single enantiomers.  相似文献   

7.
李冬艳  吴锡  郝芳丽  杨洋  陈小明 《色谱》2016,34(1):80-84
采用超临界流体色谱法(SFC),在多糖固定相Chiralpak IA、IB、IC、ID、IE和IF上成功拆分了11种手性化合物。分离结果表明,这6支手性色谱柱对这些手性化合物具有良好的手性识别互补性,均可以在10 min之内得到良好的分离结果,具有较好的实用性。改性剂甲醇、乙醇和异丙醇对手性化合物的保留时间以及手性选择性均具有良好的调节作用,需要根据不同手性物质在手性柱上的分离情况加以区别,选择使用,并调节改性剂至合适的比例。针对键合型固定相溶剂通用性的特征,特殊改性剂的应用也有助于优化手性分离。  相似文献   

8.
Two chiral columns based on polysaccharide derivatives (Chiralpak AD and Chiralcel OD) have been tested for the chiral separation of several dioxolane compounds, using supercritical fluid chromatography. The compounds studied included ketoconazole and some of its precursors. The effect of the different modifiers and the pressure, on the chromatographic parameters was also evaluated. In general, the alcohol modifiers provided better results than acetonitrile, and all the compounds could be separated with these two columns, but the selection of the column depends on the kind of compound.  相似文献   

9.
Polysaccharide‐based chiral stationary phases can be used for the enantioselective separation of a wide range of structurally different compounds. These phases are available with chiral selectors coated or immobilized on silica gel support. The means of attachment of the chiral selector to the carrier can influence the separation performance of these stationary phases. This paper deals with evaluation of differences in the separation abilities of coated Chiralpak AD‐RH versus immobilized Chiralpak IA amylose‐based stationary phases in the reversed–phase mode of high–performance liquid chromatography. A set of chiral analytes was separated under acidic and basic conditions. Differences were observed in the enantioseparation potential of the tested phases. The linear‐free energy relationship and additional evaluation of ionic interactions were used to ascertain whether the interactions that participate in retention and enantioseparation are affected by the means of preparation of these phases. All the interactions covered by the linear‐free energy relationship were significant for the studied phases and their absolute values were almost always higher for the coated phase. Ionic interactions were found to be more important on the immobilized stationary phase but did not contribute to any improvement in the enantioselective separation performance.  相似文献   

10.
Herein, the enantiomeric separation of simendan by high‐performance liquid chromatography with ultraviolet detection using polysaccharide‐based chiral stationary phases in polar organic mode is described. Three chiral columns (Chiralpak AD‐H, Chiralcel OD‐H, and Chiralpak AS) were screened using pure methanol and acetonitrile without additives under isocratic conditions. A reversed elution order was observed on the Chiralpak AD‐H column when the methanol content in the mobile phase (methanol–acetonitrile mixtures) was above 10%, whereby levosimendan eluted prior to dextrosimendan. Further, it was found that increasing temperature effectively improved the enantioresolution on the Chiralpak AD‐H column. Van't Hoff analysis was performed to evaluate the contribution of enthalpy and entropy to the chiral discrimination process. The best enantioseparation (α = 3.00, Rs = 12.85) was obtained on the Chiralpak AD‐H column with methanol as the mobile phase at 40°C. Thus, a quantitative method for the resolution of dextrosimendan was established and validated, which could be used as a reference for the determination of dextrosimendan in levosimendan products.  相似文献   

11.
徐峰  万晓龙  王军锋  康经武 《色谱》2016,34(1):57-61
建立了4个单手性和3个双手性(含有手性中心和面手性)的二茂铁衍生物在Chiralpak IC(纤维素-三(3,5-二氯苯基氨基甲酸酯))和Chiralpak IE3(直链淀粉-三(3,5-二氯苯基氨基甲酸酯))手性固定相上的高效液相色谱分离方法。4个单手性二茂铁衍生物中有3个可以在Chiralpak IE3固定相上实现基线分离,另外1个则在Chiralpak IC手性固定相上实现基线分离。3个双手性二茂铁衍生物可在Chiralpak IC手性固定相上实现基线分离。研究表明,这两种手性固定相对二茂铁衍生物具有较好的手性识别作用,并且具有互补作用。这一研究结果可为手性二茂铁化合物的分离提供借鉴和参考。  相似文献   

12.
The screening conditions of an existing column and mobile phase selection strategy for chiral compounds in normal‐phase high performance liquid chromatography (NP‐HPLC) were tested for their applicability on Chiralpak IC, which is a chiral stationary phase (CSP) made by immobilising cellulosic tris (3,5‐dichlorophenyl‐carbamate) on silica gel. In this study, the applicability of the optimization steps of the existing separation strategy was examined using 36 compounds representing the three possible resolution situations that occur after screening. The cumulative number of separated compounds is 27 (75.0 %), and the cumulative number of baseline separated compounds is 19 (52.8 %).  相似文献   

13.
Enantioseparation of the pyrrolizidine alkaloid isomers intermedine and lycopsamine, isolated from Symphytum uplandicum, is discussed. The separatory power of two immobilized carbohydrate‐based chiral HPLC columns, Chiralpak IA and IC, in different chromatographic conditions is compared. The study demonstrated the importance of solvent and column selection while developing such chiral HPLC separation methods. The baseline HPLC separation of the two alkaloid isomers in preparatory scale is reported for the first time. The optimized separations were achieved on a Chiralpak IA column with mobile phases of ACN/methanol (80:20) and methanol/methyl‐t‐butyl ether (90:10), both containing 0.1% diethylamine.  相似文献   

14.
含磷手性化合物在多聚糖类手性固定相上的手性分离   总被引:4,自引:0,他引:4  
在纤维素 三(3,5 二甲基苯基氨基甲酸酯)(ChiralcelOD)和直链淀粉 三(3,5 二甲基苯基氨基甲酸酯)(ChiralpakAD H)手性固定相上,采用高效液相色谱正相条件,分离了系列含磷手性化合物。考察了流动相中有机改性剂的种类及浓度对手性分离的影响;研究了化合物的结构与保留及对映体选择性的关系;并探讨了手性识别机理。  相似文献   

15.
《Electrophoresis》2018,39(11):1361-1369
In this work, the enantiomeric separation of ten anticholinergic drugs was first examined on two derivative polysaccharide chiral stationary phases (CSPs), i.e., Chiralpak ID and Chiralpak IA in the normal phase mode. Except for scopolamine hydrobromide, the remaining nine analytes could be completely separated with good resolutions using both columns under the optimized mobile phase conditions. And the enantiomeric discrimination ability of the studied CSPs towards nine analytes was in the order of Chiralpak ID > Chiralpak IA. The influences of organic modifier types, alcohol content, and base/acid additives on the enantiomeric separation were evaluated and optimized. According to the experimental results, the effect of the structures of analytes on enantiomeric separation was discussed. Additionally, the chiral recognition mechanisms were proposed based on the thermodynamic analysis of the experimental data.  相似文献   

16.
采用纤维素-三(3,5-二甲基苯基氨基甲酸酯)涂敷型手性固定相(Chiralcel OD柱)、直链淀粉-三(3,5-二甲基苯基氨基甲酸酯)涂敷型手性固定相(Chiralpak AD柱)、直链淀粉-三(3,5-二甲基苯基氨基甲酸酯)键合型手性固定相(Chiralpak IA柱)和Pirkle型的(S,S)-Whelk-01手性固定相对38种外消旋体化合物进行手性拆分。实验结果表明,4种固定相的手性识别能力为:OD>AD>IA>(S,S)-Whelk-01,OD固定相的手性识别率达到60%,并且它们之间的手性识别性能还具有一定的互补性。本研究对4种常用手性固定相的拆分能力进行了对比,为拆分手性化合物时有的放矢地选择手性固定相提供了参考。  相似文献   

17.
Oligoproline chiral stationary phase (CSP) is a new class peptide chiral stationary phase. Many proline chiral stationary phases with different proline chain lengths and linkers have been prepared and evaluated. However, the doubly tethered and ionic type linkers have not been adequately investigated. In this study, covalently and ionically bonded chiral stationary phases with doubly tethered linker were prepared and characterized. The new covalently bonded doubly tethered diproline CSP was applied successfully to resolve various enantiomers of acidic, basic, and neutral compounds with phenyl, naphthyl, anthryl, or similarly sized groups. The enantiorecognition performances of singly and doubly tethered diproline CSPs were comparable. Variation of the type and content of organic modifiers in hexane or heptane mobile phase showed that the branch alcohols such as 2‐propanol and 2‐butanol, 1,2‐dichloroethane, methyl tert‐butyl ether, and ethyl acetate in the mobile phase enhanced chiral separation. End‐capping on doubly tethered diproline CSP did not always improve the separation factor and resolution. Due to the rigid structure of the double tether, the enantioseparation ability of ionically bonded diproline CSP was well expressed to some analytes.  相似文献   

18.
In this study, two polyproline‐derived chiral selectors are bonded to monolithic silica gel columns. In spite of high chiral selector coverage, the derivatization was found to have only a slight effect on the hydrodynamics of the mobile phase through the column. The enantioseparation ability of the resulting chiral monolithic columns was evaluated with a series of structurally diverse racemic test compounds. When compared to analogous bead‐based chiral stationary phases, higher enantioseparation and broader application domain were observed for monolithic columns. Moreover, the increase in flow rate produces a minor reduction of resolution, which permits to shorten analysis time. Additionally, increased loadability defines chiral polyproline derived monoliths as adequate for preparative chromatography.  相似文献   

19.
Enantiomeric separations of 18 chiral polychlorinated biphenyls (PCBs) were investigated on three polysaccharide-type chiral stationary phases (CSPs; Sino-Chiral OJ, Chiralpak IB, and Chiralcel OD) by supercritical fluid chromatography (SFC). With these commonly used polysaccharide CSPs, 17 PCBs except PCB 135 (R(S) = 0.81) were well resolved (R(S) > 1.5) under appropriate mobile phases and temperatures. Using Sino-Chiral OJ, 14 PCBs could be baseline-separated, while only one and nine PCBs could be completely separated using Chiralpak IB and Chiralcel OD, respectively. The influence of column temperature was studied for the optimization of resolution, as well as for the type and percentage of organic modifier in the mobile phase. The resolution decreased as the temperature increased in the range of 26-40 °C in which the enantiomeric separations were an enthalpy-driven process. The addition of modifiers in the mobile phase decreased the resolution of the PCB enantiomers, but it clearly shortened their retention time. These separation results indicate that SFC is a promising chromatographic technique for chiral separation and enantiopure standard preparation.  相似文献   

20.
In this study, we investigate the separation of a variety of mixtures of drugs, metabolites, and related analogs including representatives of the carbamazepine, methylated xanthine, steroid hormone, nicotine, and morphine families using several automated chromatographic method development screening systems including ultra high performance liquid chromatography, core–shell HPLC, achiral supercritical fluid chromatography (SFC), and chiral SFC. Of the 138 column and mobile phase combinations examined for each mixture, a few chromatographic conditions afford the best overall performance, with a single achiral SFC method (4.6 × 250 mm, 3.0 μm GreenSep Ethyl Pyridine, 25 mM isobutylamine in methanol/CO2) affording good separation for all samples. Four of these mixtures were also resolved by achiral SFC on the Luna HILIC and chiral SFC Chiralpak IB columns using methanol or ethanol with 25 mM isobutylamine as polar modifiers. Modifications of standard chromatography screening conditions afforded fast separation methods (from 1 to 5 min) for baseline resolution of all components of each of these challenging sets of closely related compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号