首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We establish the existence and stability of multidimensional transonic shocks (hyperbolic‐elliptic shocks) for the Euler equations for steady compressible potential fluids in infinite cylinders. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for velocity, can be written as a second order nonlinear equation of mixed elliptic‐hyperbolic type for the velocity potential. The transonic shock problem in an infinite cylinder can be formulated into the following free boundary problem: The free boundary is the location of the multidimensional transonic shock which divides two regions of C1,α flow in the infinite cylinder, and the equation is hyperbolic in the upstream region where the C1,α perturbed flow is supersonic. We develop a nonlinear approach to deal with such a free boundary problem in order to solve the transonic shock problem in unbounded domains. Our results indicate that there exists a solution of the free boundary problem such that the equation is always elliptic in the unbounded downstream region, the uniform velocity state at infinity in the downstream direction is uniquely determined by the given hyperbolic phase, and the free boundary is C1,α, provided that the hyperbolic phase is close in C1,α to a uniform flow. We further prove that, if the steady perturbation of the hyperbolic phase is C2,α, the free boundary is C2,α and stable under the steady perturbation. © 2003 Wiley Periodicals Inc.  相似文献   

2.
We analyze the two‐dimensional parabolic‐elliptic Patlak‐Keller‐Segel model in the whole Euclidean space ?2. Under the hypotheses of integrable initial data with finite second moment and entropy, we first show local‐in‐time existence for any mass of “free‐energy solutions,” namely weak solutions with some free‐energy estimates. We also prove that the solution exists as long as the entropy is controlled from above. The main result of the paper is to show the global existence of free‐energy solutions with initial data as before for the critical mass 8π/χ. Actually, we prove that solutions blow up as a delta Dirac at the center of mass when t → ∞ when their second moment is kept constant at any time. Furthermore, all moments larger than 2 blowup as t → ∞ if initially bounded. © 2007 Wiley Periodicals, Inc.  相似文献   

3.
We consider an incompressible ferrofluid in a vertical Hele–Shaw cell and develop a proper analytic framework for the free interface and the velocity potential of the fluid in a periodic geometry. The flow is assumed to obey a non-Newtonian Darcy law. The forces influencing the fluid are gravity, surface tension and the response to a magnetic field induced by a current. In addition, the flow is stabilized at the lower boundary component by an external source b. We prove a well-posedness result for the flow near flat solutions. Moreover, we find conditions on the parameters and on the slope of b for the exponential stability and instability of flat interfaces. Furthermore, we identify values for the current's intensity ι where critical bifurcation of nontrivial finger-shaped solutions from the branch of trivial (flat) solutions takes place.  相似文献   

4.
We study the large‐N limit of a system of N bosons interacting with a potential of intensity 1/N. When the ground state energy is to the first order given by Hartree's theory, we study the next order, predicted by Bogoliubov's theory. We show the convergence of the lower eigenvalues and eigenfunctions towards that of the Bogoliubov Hamiltonian (up to a convenient unitary transform). We also prove the convergence of the free energy when the system is sufficiently trapped. Our results are valid in an abstract setting, our main assumptions being that the Hartree ground state is unique and nondegenerate, and that there is complete Bose‐Einstein condensation on this state. Using our method we then treat two applications: atoms with “bosonic” electrons on one hand, and trapped two‐dimensional and three‐dimensional Coulomb gases on the other hand. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
We consider a classical system of n charged particles in an external confining potential in any dimension d ≥ 2. The particles interact via pairwise repulsive Coulomb forces and the coupling parameter is of order n?1 (mean‐field scaling). By a suitable splitting of the Hamiltonian, we extract the next‐to‐leading‐order term in the ground state energy beyond the mean‐field limit. We show that this next order term, which characterizes the fluctuations of the system, is governed by a new “renormalized energy” functional providing a way to compute the total Coulomb energy of a jellium (i.e., an infinite set of point charges screened by a uniform neutralizing background) in any dimension. The renormalization that cuts out the infinite part of the energy is achieved by smearing out the point charges at a small scale, as in Onsager's lemma. We obtain consequences for the statistical mechanics of the Coulomb gas: next‐to‐leading‐order asymptotic expansion of the free energy or partition function, characterizations of the Gibbs measures, estimates on the local charge fluctuations, and factorization estimates for reduced densities. This extends results of Sandier and Serfaty to dimension higher than 2 by an alternative approach. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Applying Weglorz' mode s of set theory without the axiom of choice, we investigate Arrow‐type social we fare functions for infinite societies with restricted coalition algebras. We show that there is a reasonable, nondictatorial social welfare function satisfying “finite discrimination”, if and only if in Weglorz' mode there is a free ultrafilter on a set representing the individuals.  相似文献   

7.
We prove time decay estimates for several kinetic equations like the free lkansport, Boltzmann and Vlasov—Poisson Equations. We also consider solutions with infinite energy of the Vlasov—Poisson Equation and we show that low moments in the velocity variable are propagated. As a consequence, we prove that the potential energy becomes finite immediately and that the kinetic energy is locally finite. Our approach is based on new dispersive identities for transport equations.  相似文献   

8.
We study the homogenization of a G‐equation that is advected by a divergence free “small mean” stationary vector field in a general ergodic random environment. We prove that the averaged equation is an anisotropic deterministic G‐equation, and we give necessary and sufficient conditions for enhancement. Since the problem is not assumed to be coercive, it is not possible to have uniform bounds for the solutions. In addition, as we show, the associated minimal (first passage) time function does not satisfy, in general, the uniform integrability condition that is necessary to apply the subadditive ergodic theorem. We overcome these obstacles by (i) establishing a new reachability (controllability) estimate for the minimal function and (ii) constructing, for each direction and almost surely, a random sequence that has both a long‐time averaged limit (due to the subadditive ergodic theorem) and stays asymptotically close to the minimal time. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
We consider the Dirichlet and Robin boundary value problems for the Helmholtz equation in a non‐locally perturbed half‐plane, modelling time harmonic acoustic scattering of an incident field by, respectively, sound‐soft and impedance infinite rough surfaces.Recently proposed novel boundary integral equation formulations of these problems are discussed. It is usual in practical computations to truncate the infinite rough surface, solving a boundary integral equation on a finite section of the boundary, of length 2A, say. In the case of surfaces of small amplitude and slope we prove the stability and convergence as A→∞ of this approximation procedure. For surfaces of arbitrarily large amplitude and/or surface slope we prove stability and convergence of a modified finite section procedure in which the truncated boundary is ‘flattened’ in finite neighbourhoods of its two endpoints. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Using a clever inductive counting argument Erd?s, Kleitman and Rothschild showed in 1976 that almost all triangle‐free graphs are bipartite, i.e., that the cardinality of the two graph classes is asymptotically equal. In this paper we investigate the structure of the “few” triangle‐free graphs which are not bipartite. As it turns out, with high probability, these graphs are bipartite up to a few vertices. More precisely, almost all of them can be made bipartite by removing just one vertex. Almost all others can be made bipartite by removing two vertices, and then three vertices and so on. We also show that similar results hold if we replace “triangle‐free” by K??+1‐free and “bipartite” by ??‐partite. © 2001 John Wiley & Sons, Inc. Random Struct. Alg., 19, 37–53, 2001  相似文献   

11.
The nonlinear reaction‐diffusion system in an unbounded domain is studied. It is proven that, under some natural assumptions on the nonlinear term and on the diffusion matrix, this system possesses a global attractor ?? in the corresponding phase space. Since the dimension of the attractor happens to be infinite, we study its Kolmogorov's ?‐entropy. Upper and lower bounds of this entropy are obtained. Moreover, we give a more detailed study of the attractor for the spatially homogeneous RDE in ?n. In this case, a group of spatial shifts acts on the attractor. In order to study the spatial complexity of the attractor, we interpret this group as a dynamical system (with multidimensional “time” if n > 1) acting on a phase space ??. It is proven that the dynamical system thus obtained is chaotic and has infinite topological entropy. In order to clarify the nature of this chaos, we suggest a new model dynamical system that generalizes the symbolic dynamics to the case of the infinite entropy and construct the homeomorphic (and even Lipschitz‐continuous) embedding of this system into the spatial shifts on the attractor. Finally, we consider also the temporal evolution of the spatially chaotic structures in the attractor and prove that the spatial chaos is preserved under this evolution. © 2003 Wiley Periodicals, Inc.  相似文献   

12.
《代数通讯》2013,41(7):3135-3141
Abstract

Let A be an absolute valued algebra. In El-Mallah (El-Mallah,M. L. (1988). Absolute valued algebras with an involution. Arch. Math. 51: 39–49) we proved that,if A is algebraic with an involution,then A is finite dimensional. This result had been generalized in El-Amin et al. (El-Amin,K.,Ramirez,M. I.,Rodriguez,A. (1997). Absolute valued algebraic algebras are finite dimensional. J. Algebra 195:295–307),by showing that the condition “algebraic” is sufficient for A to be finite dimensional. In the present paper we give a generalization of the concept “algebraic”,which will be called “semi-algebraic”,and prove that if A is semi-algebraic with an involution then A is finite dimensional. We give an example of an absolute valued algebra which is semi-algebraic and infinite dimensional. This example shows that the assumption “with an involution” cannot be removed in our result.  相似文献   

13.
The present work offers a detailed account of the large‐time development of the velocity profile run by a single “individual” Hamiltonian flow of the Camassa‐Holm (CH) hierarchy, the Hamiltonian employed being the reciprocal of any eigenvalue of the underlying spectral problem. In this simpler scenario, I prove some of the conjectures raised by McKean [27]. Notably, I confirm the ultimate shaping into solitons of the cusps that appear, near blowup sites, of any velocity profile emanating from an initial disposition for which breakdown of the wave in finite time is sure to happen. The careful large‐time asymptotic analysis is carried from exact expressions describing the velocity in terms of initial data, the integration involving a “Lagrangian” scale and three “theta functions,” the rates at which the latter reach their common values at each end of the line characterizing the region where soliton genesis is expected. In fact, the present method also suggests how solitons may arise from initial conditions not leading to breakdown. The full CH flow is nothing but a superposition of such commuting “individual” actions. Therein lies the hope that the present account will pave the way to elucidate soliton formation for more complex flows, in particular for the CH flow itself. © 2005 Wiley Periodicals, Inc.  相似文献   

14.
Regularity of the solution for the wave equation with constant propagation speed is conserved with respect to time, but such a property is not true in general if the propagation speed is variable with respect to time. The main purpose of this paper is to describe the order of regularity loss of the solution due to the variable coefficient by the following four properties of the coefficient: “smoothness”, “oscillations”, “degeneration” and “stabilization”. Actually, we prove the Gevrey and C well‐posedness for the wave equations with degenerate coefficients taking into account the interactions of these four properties. Moreover, we prove optimality of these results by constructing some examples (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Consider a viscous liquid droplet spreading on a surface. The classical slip condition at the liquid‐solid interface is the no‐slip condition. However, this condition yields infinite dissipation rate when the contact line moves (“no‐slip paradox”). For this reason other slip conditions such as the Navier slip condition have been proposed. We prove well‐posedness for a reduced 1‐D fluid model related to Navier slip. It turns out that the profile of the droplet cannot be described by a smooth function (not even for an initially smooth profile). However, existence and uniqueness can be proved in larger classes of spaces that allow for certain classes of singular expansions at the moving contact point. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
Exact free surface flows with shear in a compressible barotropic medium are found, extending the authors’ earlier work for the incompressible medium. The barotropic medium is of finite extent in the vertical direction, while it is infinite in the horizontal direction. The “shallow water” equations for a compressible barotropic medium, subject to boundary conditions at the free surface and at the bottom, are solved in terms of double psi-series. Simple wave and time-dependent solutions are found; for the former the free surface is of arbitrary shape while for the latter it is a damping traveling wave in the horizontal direction. For other types of solutions, the height of the free surface is constant either on lines of constant acceleration or on lines of constant speed. In the case of an isothermal medium, when γ = 1, we again find simple wave and time-dependent solutions.  相似文献   

17.
We study the asymptotic limit of a family of functionals related to the theory of micromagnetics in two dimensions. We prove a compactness result for families of uniformly bounded energy. After studying the corresponding one‐dimensional profiles, we exhibit the Γ‐limit (“wall energy”), which is a variational problem on the folding of solutions of the eikonal equation |∇g| = 1. We prove that the minimal wall energy is twice the perimeter. © 2001 John Wiley & Sons, Inc.  相似文献   

18.
We give a new construction of the uniform infinite half‐planar quadrangulation with a general boundary (or UIHPQ), analogous to the construction of the UIPQ presented by Chassaing and Durhuus, which allows us to perform a detailed study of its geometry. We show that the process of distances to the root vertex read along the boundary contour of the UIHPQ evolves as a particularly simple Markov chain and converges to a pair of independent Bessel processes of dimension 5 in the scaling limit. We study the “pencil” of infinite geodesics issued from the root vertex as reported by Curien, Ménard, and Miermont and prove that it induces a decomposition of the UIHPQ into 3 independent submaps. We are also able to prove that balls of large radius around the root are on average 7/9 times as large as those in the UIPQ, both in the UIHPQ and in the UIHPQ with a simple boundary; this fact we use in a companion paper to study self‐avoiding walks on large quadrangulations.  相似文献   

19.
We consider the spreading of a thin droplet of viscous liquid on a plane surface driven by capillarity. The standard lubrication approximation leads to an evolution equation for the film height h that is ill‐posed when the spreading is limited by the no‐slip boundary condition at the liquid‐solid interface due to a singularity at the moving contact line. The most common relaxation of the no‐slip boundary condition removes this singularity but introduces a new physical length scale: the slippage length b. It is believed that this microscopic‐length scale only enters logarithmically in the effective (that is, macroscopic) spreading behavior. In this paper, we rigorously show that the naively expected spreading rate is indeed only altered by a logarithmic term involving b. More precisely, we prove a scaling law for the diameter of the apparent (that is, macroscopic) support of the droplet in time. This is an intermediate scaling law: It takes an initial layer to “forget” the initial droplet shape, whereas after a long time, the droplet is so thin that its spreading is governed by the physics on the scale b. Our proof works by deriving suitable estimates for physically relevant integral quantities: the free energy, the length of the apparent support, and their respective rates of change. As opposed to matched asymptotic methods, this PDE approach closely mimics a simple heuristic argument based on the gradient flow structure. © 2002 John Wiley & Sons, Inc.  相似文献   

20.
The Birman exact sequence describes the effect on the mapping class group of a surface with boundary of gluing discs to the boundary components. We construct an analogous exact sequence for the automorphism group of a free group. For the mapping class group, the kernel of the Birman exact sequence is a surface braid group. We prove that in the context of the automorphism group of a free group, the natural kernel is finitely generated. However, it is not finitely presentable; indeed, we prove that its second rational homology group has infinite rank by constructing an explicit infinite collection of linearly independent abelian cycles. We also determine the abelianization of our kernel and build a simple infinite presentation for it. The keys to many of our proofs are several new generalizations of the Johnson homomorphisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号