首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work, we prepared and characterized polyamideimide (PAI)/silica hybrids compatibilized with 3-aminopropyltriethoxysilane (APTES). PAI/silica nanohybrid thin films were prepared using an in situ sol-gel process, followed by thermal imidization. We have investigated the microstructures and properties of the PAI/silica hybrids using FT-IR spectroscopy, X-ray diffraction, small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). We also measured their tensile properties, thermal properties, refractive indices, and dielectric constants. In general, the properties of the PAI/silica hybrids were optimized when the silica content was 6 wt.%.  相似文献   

2.
Thermal properties of the organic–inorganic bicontinuous nanocomposites prepared via in situ two-stage polymerization of various silanes, epoxy, and amine monomers are investigated, and the impact of filler content and its organic compatibility on thermal stability of these nanocomposites is studied. Two series of epoxy–silica nanocomposites, namely, EpSi-A and EpSi-B containing 0–20 wt% silica, are synthesized. An epoxy–silane coupling agent is employed to improve the organic compatibility of silica in EpSiB nanocomposites. The composites synthesized via two-stage polymerization are characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric (TG) analysis. DSC and TG/differential thermogravimetric results reveal substantially high glass transition (T g) and excellent thermal stability of the bicontinuous nanocomposites as compared with pristine epoxy polymer. Both T g and thermal properties, however, considerably vary depending on the organic compatibility of the nanocomposites. Significantly higher decomposition temperatures are recorded in case of EpSi-B nanocomposites owing to the chemical links between the epoxy and silica phases. Kinetic studies also show relatively higher activation energies of pyrolysis for EpSi-B nanocomposites.  相似文献   

3.
In this paper, a new type of soluble polyester/silica (PE/SiO2) hybrid was prepared by the ultrasonic irradiation process. The coupling agent γ-glycidyloxypropyltrimethoxysilane (GOTMS) was chosen to enhance the compatibility between the polyester (PE) and silica (SiO2). Furthermore, the effects of the coupling agent on the morphologies and properties of the PE/SiO2 hybrids were investigated using UV-vis and FT-IR spectroscopies and FE-SEM. The densities and solubilities of the PE/SiO2 hybrids were also measured. The results show that the size of the silica particle was markedly reduced by the introduction of the coupling agent, which made the PE/SiO2 hybrid films become transparent. Furthermore, thermal stability, residual solvent in the membrane film and structural ruination of membranes were analyzed by thermal gravimetric analysis (TGA). The effects of SiO2 nanoparticles on the glass transition temperature (Tg) of the prepared nanocomposites were studied by differential scanning calorimetry (DSC). Moreover, their mechanical properties were also characterized. It can be observed that the Young's moduli (E) of the hybrid films increase linearly with the silica content. The results obtained from gas permeation experiments with a constant pressure setup showed that adding SiO2 nanoparticles to the polymeric membrane structure increased the permeability of the membranes.  相似文献   

4.
The viscosity, cure properties, storage, and loss moduli and tan δ of natural rubber (NR) filled with the same amounts of precipitated silica (PSi) and fly ash silica (FASi) fillers were measured. The fillers were treated with bis[3‐triethoxysilylpropyl‐]tetrasulfide (TESPT), or, used in the rubber untreated. TESPT is a sulfur‐containing bi‐functional organosilane that chemically adheres silica to rubber and also prevents silica from interfering with the reaction mechanism of sulfur cure. The dispersion of PSi and FASi in the rubber was investigated using scanning electron microscope (SEM). The effects of silica type and loading and surface treatment on the aforementioned properties were of interest. The SEM results showed that the FASi particles were larger in size and had a wider particle size distribution when compared with the PSi particles. The viscosity of the compounds decreased progressively with mixing time, and the compounds with FASi had a lower viscosity than those filled with PSi. The treatment with Si69 had no beneficial effect on the dispersion of the fillers in the rubber matrix. At low temperatures, the type and loading of the filler had no effect on the storage and loss moduli of the compounds, but the effect was more pronounced at high temperatures. There was also evidence from the tan δ and glass transition temperature (Tg) measurements that some limited interaction between the filler particles and rubber had occurred because of TESPT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.

Different thermal analysis techniques were used to study the effect of fillers and ionic liquids (ILs) on the vulcanization process, thermal and dynamic mechanical properties of acrylonitrile–butadiene elastomer (NBR). The products of the studies were composites of NBR filled with hydrotalcite, nanosized silica or carbon black. ILs such as 1-butyl-1-methylpyrrolidinium (BMpyrrolBF4), 1-butyl-4-methylpyridinium (BMpyrBF4) or 1-butyl-1-methylpiperidinium (BMpipBF4) tetrafluoroborates were applied to improve the dispersion degree of the curatives and filler particles in the elastomer and to increase the efficiency of vulcanization. The differential scanning calorimetry results indicated that ILs reduced the vulcanization temperature of NBR compounds and increased the homogeneity of cross-link distribution in the elastomer network. NBRs filled with carbon black or silica exhibited similar thermal stabilities, whereas hydrotalcite reduced the temperature of thermal decomposition. The lowest mechanical loss factors were determined for vulcanizates filled with nanosized silica.

  相似文献   

6.
A novel flame-retardant silane containing phosphorus and nitrogen, tetramethyl(3-(triethoxysilyl)propylazanediyl) bis(methylene) diphosphonate (TMSAP), is firstly synthesized and then incorporated into poly(methyl methacrylate) (PMMA) matrix through sol–gel method to produce organic–inorganic hybrids. The chemical structure of TMSAP was confirmed by Fourier transform infrared spectra, 1H nuclear magnetic resonance (NMR) and 31P NMR spectra. The hybrids obtained maintain relatively high transparency, and exhibit a significant improvement in thermal properties, mechanical performance and flame retardancy when compared to pure PMMA, including increased glass transition temperature (T g ) by 11.4 °C, increased onset thermal degradation temperature (T0.1) by 82.6 °C, increased half thermal degradation temperature (T0.5) by 42.0 °C, increased hardness, increased limited oxygen index and decreased heat release rate. Morphological studies of hybrids by scanning electron microscopy (SEM) and 29Si MAS NMR suggest that cross-linked silica network is formed in the hybrids and the inorganic silica particles are distributed well in the polymer matrix. Thermal degradation behaviors investigated by thermogravimetric analysis and char structure analysis studied by SEM and X-ray photoelectron spectroscopy demonstrate the catalytic charring function of TMSAP, and synergistic effect between phosphorus, nitrogen and silicon element. The formation of network structure, homogeneous distribution of silica and the char formation during degradation play key roles in these property enhancements. Detailed mechanisms for these enhancements are proposed.  相似文献   

7.
Nanocomposite membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP) and silica were synthesized by sol–gel copolymerization of tetraethoxysilane (TEOS) with different organoalkoxysilanes in tetrahydrofuran solutions of PTMSP. The influence of the synthesis parameters (type and concentration of organoalkoxysilanes, temperature and time) on the silica conversion and the gas permeation performance of PTMSP–silica nanocomposite membranes was investigated and discussed in this paper. The nanocomposite membranes were characterized by single and mixed gas permeation, thermogravimetric analysis and scanning electron microscopy. The butane permeability and the butane/methane selectivity increased simultaneously when high silica conversion was obtained and the size of particle was in the range 20–40 nm. For the sake of comparison, nanocomposite membranes based on PTMSP were also prepared by dispersing silica particles with different functional groups into the PTMSP casting solution. The addition of fillers to the polymer matrix can be performed up to a higher content of silica (30% silica-filled PTMSP in contrast to 6 wt.% for the in situ-generated silica). In this case, the simultaneous increase in butane permeability and butane/methane selectivity was significantly higher when compared to the nanocomposite membranes prepared by sol–gel process. The addition of fillers with 50% of surface modification with hydrophobic groups (Si–C8H17 and Si–C16H33) seems not to lead to a significant increase of the butane/methane selectivity and butane permeability when compared to the silica with hydrophilic surface groups, probably because of the unfavorable polymer/filler interaction, leading to an agglomeration of the long n-alkyl groups at the surface of the polymer. An increase of butane permeability up to six-fold of unfilled polymer was obtained.  相似文献   

8.
陈枫  傅强 《高分子科学》2013,31(11):1546-1553
Two kinds of poly(vinyl alcohol)(PVA)-silica composites were prepared with different methods. One composite was prepared by directly mixing PVA with 80 nm silica nano-particles which were made from tetraethoxysilane(TEOS). The another was obtained by the mixing PVA and hydrolyzed TEOS in the presence of acid-catalyst. The properties of the two PVA/silica hybrids were characterized by means of scanning electron microscopy(SEM), UV-Visible spectroscopy,solubility tests, limiting oxygen index(LOI) test, tensile test and dynamical mechanical analysis(DMA), respectively. The results indicate that PVA-TEOS composites(PT for short) display more transparency than PVA-silica nano-particles hybrids(PS for short). At the same time, The PT composites presented more excellent performance than PS in water resistance, fire resistance and mechanical properties. Moreover, the Tg of PT increased with increasing TEOS content, while that of PS decreased.  相似文献   

9.
With advances in nanoscience and nanotechnology, there is increasing interest in polymer nanocomposites, both in scientific research and for engineering applications. Because of the small size of nanoparticles, the polymer–filler interface property becomes a dominant factor in determining the macroscopic material properties of the nanocomposites. The glass‐transition behaviors of several epoxy nanocomposites have been investigated with modulated differential scanning calorimetry. The effect of the filler size, filler loading, and dispersion conditions of the nanofillers on the glass‐transition temperature (Tg) have been studied. In comparison with their counterparts with micrometer‐sized fillers, the nanocomposites show a Tg depression. For the determination of the reason for the Tg depression, the thermomechanical and dielectric relaxation processes of the silica nanocomposites have been investigated with dynamic mechanical analysis and dielectric analysis. The Tg depression is related to the enhanced polymer dynamics due to the extra free volume at the resin–filler interface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3849–3858, 2004  相似文献   

10.
Composites of a fumed silica industrial residue and an epoxy resin were prepared and their thermal stability and thermal degradation behaviour were studied by TGA in air. Classical thermal stability parameters, based on the initial decomposition temperature (IDT), temperature of maximum rate of mass loss (Tmax) and integral procedure decomposition temperature (IPDT) were calculated before and after subtraction of the filler mass from the TGA curves. Without filler mass subtraction, the thermal stability of the epoxy resin seems to be improved and the mass loss rate was reduced by the addition of fumed silica. Nevertheless, after subtraction of the filler mass, the thermal degradation behaviour of the resin was only slightly affected by the silica content. A possible negative effect of the silica content on the cure was also found.  相似文献   

11.
The effect of carbon black(CB) and graphite(G) powders on the macroscopic and nano-scale free volume properties of silicone rubber based on poly(di-methylsiloxane)(PDMS) was studied through thermal and cyclic mechanical measurements, as well as with positron annihilation lifetime spectroscopy(PALS). The melting temperature of the composites(Tm) and the endothermic enthalpy of melting(?Hm) were estimated by differential scanning calorimetry(DSC). Tm and the degree of crystallinity(χc) of PDMS composites were found to decrease with increasing the CB content. This can be explained due to the increase in physical cross-linking which results in a decrease in the crystallite thickness. Besides, χc was found to be dependent on the filler type. Cyclic stress-strain behavior of PDMS loaded with different contents of filler has been studied. Mullins ratio(RM) was found to be dependent on the filler type and content. It was found that, RM increases with increasing the filler content due to the increase in physical cross-linking which results in a decrease in the size of free volume, as observed through a decrease of the o-Ps lifetime τ3 measured by PALS. Moreover, the hysteresis in PDMS-CB composites was more pronounced than in PDMS-G composites. Furthermore, a correlation was established between the free volume Vf and the mechanical properties of PDMS composites containing different fillers. A negative correlation was observed between Vf and RM.  相似文献   

12.
CaCO3/PEEK (poly-ether ether ketone) composites were prepared on a twin-screw extruder with different mass ratio of CaCO3/PEEK from 0% to 30%. Four types of particles were used as filler in PEEK matrix. The influence of surface treatment with sulfonated PEEK (SPEEK) of the particles on the mechanical and thermal properties of the composites was studied. The experiments included tensile tests, flexural tests, notched Izod impact tests, TGA, DSC and SEM. The modulus and yield stress of the composites increased with CaCO3 particles loadings. This increase was attributed to the bonding between the particles and the PEEK matrix, as can be proved by the SEM pictures of tensile fracture surface of the composites. The impact strength of the composites was modified by the SPEEK coated on the CaCO3 particle surface. DSC experiments showed that the particle content and surface properties influenced the glass transition temperature (Tg) and melting temperature (Tm) of the composites. The Tg increased with the content of fillers while Tm decreased. In this study the fillers treated were found to give better combination properties, which indicated that SPEEK played a constructive role in the CaCO3/PEEK composites.  相似文献   

13.
The cerium doped barium titanate (BaTiO3:Ce)/poly methyl methacrylate(PMMA) polymer nano-composites (PNC) were successfully fabricated via solvent evaporation method with microwaves (2.4 GHz) heating. The X-ray diffraction measurements confirm the formation of barium titanate (BT) with crystallite size ranges from 55 to 62 nm. Differential scanning calorimetry study shows that the glass transition temperature (Tg) directly affected by microwaves heat treatment and particle size of filler. The broadband dielectric spectroscopy was employed to investigate the frequency and temperature dependence of the dielectric properties of the nanocomposites in a frequency range from 75 kHz to 5 MHz and temperature range 80–400 K. The introduction of different BT fillers in PMMA enhance the dielectric constant of PNCs drastically and give a smooth response in frequency range mentioned above. The loss factor of the composite can be suppressed by using cerium doped barium titanate filler rather than pure barium titanate filler.  相似文献   

14.
This study is to investigate the effect of nitrile butadiene rubber (NBR as impact modifier) together with Al2O3/YSZ (toughening) as filler loading in PMMA denture base on the thermal and mechanical properties. PMMA matrix without fillers was mixed between PMMA powder and 0.5 mass% of BPO, and it is used as the control group. The liquid components consist of 90% of methyl methacrylate (MMA) and 10% as the cross-linking agent of ethylene glycol dimethacrylate. The denture base composites were fabricated by incorporating PMMA powder and BPO and fixed at 7.5 mass% NBR particles and filler loading (1, 3, 5, 7 and 10 mass%) of Al2O3/YSZ mixture filler by (1:1 ratio) as the powder components. The ceramic fillers were treated with silane (γ-MPS) and the powder/liquid ratio (P/L) according to dental laboratory practice. The TGA data obtained show that the PMMA composites have better thermal stability compared to unreinforced PMMA, while DSC curves show slightly similar Tg values. DSC results also indicated the presence of unreacted monomer content for both reinforced and unreinforced PMMA composites. The fracture toughness, Vickers hardness and flexural modulus values were statistically increased compared to the unreinforced PMMA matrix (P?<?0.05).  相似文献   

15.
Thermal properties of the silica/poly(2,6-dimethyl-1,4-phenylene oxide) films prepared via emulsion polymerized mixed matrix (EPMM) method are investigated, and the impact of the synthesis protocol on the silica content, compatibility between the organic and inorganic phases, and the thermal stability of these nanocomposites is studied. Two series of films, namely EPMM-1S and EPMM-2S, synthesized in one- and two-step process, respectively, with different combinations of surfactant and compatibilizer were prepared. The polymerization of the silica precursor in the films was confirmed by 29Si nuclear magnetic resonance, and its content was investigated by inductively coupled plasma mass spectroscopy analysis. Thermal properties of the EPMM films were investigated by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature (T g) of EPMM films was greater compared to the neat PPO film. However, an increase in T g was not related to the concentration of silica in the film, but rather to the quality of dispersion of synthesized nanoparticles. Despite a lower inorganic loading, EPMM-1S films had a greater T g than EPMM-2S films. On the other hand, both the decomposition temperature and the activation energy for the decomposition were directly related to the silica content in the EPMM films. In general, regardless of the synthesis protocol, the presence of compatibilizer (ethanol) leads to greater inorganic content and improved thermal properties of the EPMM films.  相似文献   

16.
The 4,4,-oxydiphthalic anhydride-chitosan (ODAC) filler at composition of 2–12 wt/v% was selected to reinforce the Cs matrix by solution casting method. The thermal properties of the bio-composites were then evaluated by thermogravimetry analysis, differential scanning calorimetry, and dynamic mechanical analysis. The addition of ODAC filler in Cs matrix up to 10 wt/v% had increased the thermal stability of the bio-composites by increasing the thermal degradation (T d) and glass transition temperature (T g) of the bio-composites. Good interfacial bonds of electrostatic interactions and inter-hydrogen bonds of the bio-composite components significantly influenced the thermal properties of the bio-composites.  相似文献   

17.
The molecular dynamics of carboxylated acrylonitrile-butadiene rubber - silica hybrid materials was investigated. Silica hybrids were formed in situ rubber matrix using varied amounts of N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (DAMS), serving also as a cross-linker. Filler-filler and filler-rubber interactions were present, due to the specific nature of these materials. It was found that the amounts of added aminosilane determined the cross-linking density of obtained materials and was the highest with 20 phr DAMS used. The cross-links had ionic nature. Dielectric relaxation spectroscopy (DRS) revealed β, α and α′ relaxation processes. The β relaxation, correlated with the mobility of polymer side groups, was influenced by the weak interaction between both acrylonitrile and carboxylic groups of the rubber and silanol groups of silica. The activation energy for that relaxation was similar for all materials (∼32 kJ mol−1). Both DRS and dynamical mechanical analysis (DMA) demonstrated that the amount of in situ formed silica filler did not significantly influence either the temperature of the α relaxation (correlated with glass transition) or its activation energy. Therefore, that relaxation was caused by free polymer chains, not attached to the silica particles. Similar values of glass transition temperature (Tg) for all hybrids were confirmed by DSC. It appeared that the amplitude of tangent delta (DMA) within Tg was dependent on silica amount. Detected at higher temperature α′ relaxation resulted from the presence of domains, where polymer chains were affected by silica network, geometrical restrictions and morphology of the silica-rich domains.  相似文献   

18.
The effect of silica content on thermal oxidative stability of styrene–butadiene rubber (SBR)/silica composites has been studied. Morphologies of silica in SBR with different contents are investigated by scanning electron microscopy, which indicates that silica can well disperse in SBR matrix below the content of 40 %, otherwise aggregates or agglomerates will generate. Composites with around 40 % silica content show excellent mechanical properties and retention ratios after aging at 85 °C for 6 days. The values of activation energy (E a) of pure SBR and its composites are calculated by Kissinger and Flynn–Wall–Ozawa methods based on thermogravimetric (TG) results, which suggests that composite with about 20 % silica has minimum E a, and composite with 30–40 % silica has maximum E a. According to TG curves, it is found that silica can suppress the formation of char leading to decline in stability to some extent. On the other side, silica also has positive effect on improving thermal stability of the matrix as filler. Thus, the SBR/silica composites with silica content of 30–40 % can possess both excellent resistance to thermal oxidative degradation and superior mechanical properties.  相似文献   

19.
A new plasticized nanocomposite polymer electrolyte based on poly (ethylene oxide) (PEO)-LiTf dispersed with ceramic filler (Al2O3) and plasticized with propylene carbonate (PC), ethylene carbonate (EC), and a mixture of EC and PC (EC+PC) have been studied for their ionic conductivity and thermal properties. The incorporation of plasticizers alone will yield polymer electrolytes with enhanced conductivity but with poor mechanical properties. However, mechanical properties can be improved by incorporating ceramic fillers to the plasticized system. Nanocomposite solid polymer electrolyte films (200–600 μm) were prepared by common solvent-casting method. In present work, we have shown the ionic conductivity can be substantially enhanced by using the combined effect of the plasticizers as well as the inert filler. It was revealed that the incorporating 15 wt.% Al2O3 filler in to PEO: LiTf polymer electrolyte significantly enhanced the ionic conductivity [σ RT (max)?=?7.8?×?10?6 S cm?1]. It was interesting to observe that the addition of PC, EC, and mixture of EC and PC to the PEO: LiTf: 15 wt.% Al2O3 CPE showed further conductivity enhancement. The conductivity enhancement with EC is higher than PC. However, mixture of plasticizer (EC+PC) showed maximum conductivity enhancement in the temperature range interest, giving the value [σ RT (max)?=?1.2?×?10?4 S cm?1]. It is suggested that the addition of PC, EC, or a mixture of EC and PC leads to a lowering of glass transition temperature and increasing the amorphous phase of PEO and the fraction of PEO-Li+ complex, corresponding to conductivity enhancement. Al2O3 filler would contribute to conductivity enhancement by transient hydrogen bonding of migrating ionic species with O–OH groups at the filler grain surface. The differential scanning calorimetry thermograms points towards the decrease of T g , crystallite melting temperature, and melting enthalpy of PEO: LiTf: Al2O3 CPE after introducing plasticizers. The reduction of crystallinity and the increase in the amorphous phase content of the electrolyte, caused by the filler, also contributes to the observed conductivity enhancement.  相似文献   

20.
Thermal and rheological properties of plant-based natural filler-reinforced polyethylene bio-composites applying various filler loadings as well as the impacts of the different compatibilizers were investigated by means of differential scanning calorimetry and dynamic mechanical thermal analysis (DMTA). As lignocellulosic materials, such as rice-husk flour and wood flour, are eco-friendly biomaterials and a thermoplastic polymer, for example, high-density polyethylene, has good physico-mechanical and thermal properties, therefore their bio-composites can combine and utilize these two advantages at the same time. The temperature of the α-relaxation (T α) slightly increased and melting temperatures (T m) of the matrix polymer in the case of the studied bio-composites did not shift significantly as the filler loading changed, because the rigid interphase hinders the motion of polymer segments resulting in the increase in T α and only weak interactions developed at the interface between the matrix polymer and the reinforcement in the case of non-compatibilized composites. However, compatibility between the reinforcement and the matrix polymer was enhanced by incorporating compatibilizers, which further improved stiffness. From the DMTA experiment, the reinforcements result in composite samples having higher storage modulus (E′) than the neat polymer sample, indicating that incorporating lignocellulosic filler increased their stiffness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号