首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epoxy-clay nanocomposites, HDTMA-BDGE, HDTMA-BPDG, HDTMA-BBDG, HDTMA-TGDDM and HDTPP-BDGE were synthesized using hexadecylammonium clay and hexadecylphosphonium clay, respectively. The Montmorillonite (MMT) clay was modified with quaternary ammonium salt and with triphenylphosphonium salt which was intercalated into the interlayer region of MMT-Clay. The epoxy-clay systems were cured by using diaminodiphenylsulphone as a curing agent. The X-ray diffraction patterns obtained for the systems confirmed the nanodispersion of MMT-Clay in the epoxy networks. The ammonium clay-modified systems displayed appreciable mechanical and glass-transition temperature properties while, the phosphonium clay-modified system exhibited highest thermal resistance properties compared with unmodified epoxy systems. The Tg decrease observed in all the clay-modified epoxy systems, may be compromised with their advantage of requiring the filler content very low (5wt%), when compared to the conventional epoxy systems whose filler quantity is normally required from 25 to 30 wt%.  相似文献   

2.
Different chemical pre-treatments of Spartium junceum L. fibres using alkali (NaOH), nanoclay (MMT) and Citric acid (CA) with the aim of producing biodegradable composite material are discussed. As environmental requirements in processing technologies have been higher in recent years, the Polylactic acid (PLA) is used in this research as a matrix, due to its renewability, biodegradability and biocompatibility. Biocomposites are prepared by reinforcing PLA with randomly oriented, short Spartium junceum L. fibres in order to increase material strength. The effects of different pre-treatments of Spartium junceum L. fibres on the mechanical properties of final biocomposite material are examined. Fibre tenacity is studied using Vibroscop and Vibrodyn devices. Tensile strength of biocomposite material was measured on the universal electromechanical testing machine Instron 5584. The results indicate that biocomposites reinforced with fibres modified with MMT and CA show upgraded mechanical properties of the final composite material in comparison with the composite materials reinforced with referenced (nontreated) fibres. Infrared spectra of tested fibres and biocomposites were determined with Fourier transform infrared spectroscopy using Attenuated total reflection (FT-IR ATR) sampling technique and the influence of fibre modifications on the fibre/polymer interfacial bonding was investigated. The interface of Spartium/PLA composites was observed with scanning electron microscope (SEM) and it was clearly visible that biocomposites reinforced with fibres modified by MMT and CA showed better interaction of fibres and matrix.  相似文献   

3.
采用水热方法,在493 K条件下反应72小时,合成了氟基蒙脱土(F-MMT),在这种F-MMT中,硅酸盐结构中的一些OH-被F-取代。采用溶液插层方法,制备了聚乙烯醇/F-MMT纳米复合材料(PVA/F-MMT)。采用X 射线衍射、扫描电镜和透射电镜对F-MMT 和 PVA/F-MMT纳米复合材料进行了表征;结果表明,片状结构的F-MMT均匀分散于PVA中,形成了层离结构的纳米复合材料。热重分析、力学性能和紫外可见光谱的测试结果表明,在没有牺牲光学性能情况下,PVA/F-MMT纳米复合材料的热稳定性和力学性能都得到了提高。力学和热学性能的提高归功于F-MMT均匀而好的分散于聚合物基体中,以及PVA中的 OH- 和F-MMT 中F-之间强的氢键作用。  相似文献   

4.
The thermal, morphological and optical studies of BaSO4 and MMT (nanoclay) embedded in PVDF were investigated. Nanocomposites samples of PVDF–BaSO4–MMT were prepared by varying the loadings (1–4 mass%) in case of BaSO4 and MMT nanomaterials, respectively. Polyvinylidene fluoride–barium sulfate-montmorillonite (PVDF–BaSO4–MMT) nanocomposites were prepared by solvent-mixing technique. Nanoparticles were synthesized by in situ deposition technique with the help of nonionic polymeric surfactant, and the particle size of nanoparticles was recognized by scanning electron microscopy (SEM) analysis which confirms that the particle has diameter of 80–90 nm. As prepared, nanocomposites films (thickness, 25 μm) were characterized by Fourier transform infrared microscopy (FTIR), SEM and electron diffraction spectroscopy (EDS). FTIR shows that all the chemical constituents were present in the nanocomposites, whereas SEM analysis suggested that the nanofillers dispersed well in polymer matrix and EDS showed the elemental composition of nanocomposite samples. Thermal properties of nanocomposites were studied by using TG/DTA/DTG. TG/DTA studies showed decomposition temperature of pure PVDF is 473.5 °C. The decomposition temperature (T d) of nanocomposites was increased by 93 °C in case of nanocomposites with addition of both BaSO4 and MMT nanomaterials. The difference in the thermal degradation temperature was found to be 1.2% higher in case of addition of BaSO4 nanoparticle as compared to nanoclay. The obtained transparent nanocomposite films were characterized by using UV–Vis spectrophotometer which shows that transparencies of nanocomposites are maintained in visible region, the intensity of absorption band in UV region is increased with the addition of BaSO4 nanoparticles, while in case of addition of nanoclay the UV region does not show drastic changes. Addition of both nanoparticle and nanoclay shows higher absorption in comparison with the individual samples. But further, doubling the amount of nanoparticle and nanoclay shows decrease in UV absorption. Overall, the results of thermal studies show that the incorporation of BaSO4 and MMT could significantly improve the thermal properties of nanocomposites.  相似文献   

5.
Poly(ethylene terephthalate‐co‐ethylene naphthalate) (PETN)/organoclay was synthesized with the solution intercalation method. Hexadecylamine was used as an organophilic alkylamine in organoclay. Our aim was to clarify the intercalation of PETN chains to hexadecylamine–montmorillonite (C16–MMT) and to improve both the thermal stability and tensile property. We found that the addition of only a small amount of organoclay was enough to improve the thermal stabilities and mechanical properties of PETN/C16–MMT hybrid films. Maximum enhancement in both the ultimate tensile strength and initial modulus for the hybrids was observed in blends containing 4 wt % C16–MMT. Below a 4 wt % clay loading, the clay particles could be highly dispersed in the polymer matrix without a large agglomeration of particles. However, an agglomerated structure did form in the polymer matrix at a 6 wt % clay content. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2581–2588, 2001  相似文献   

6.
Gelatin/sodium montmorillonite (Na+MMT) hybrid nanocomposite films were prepared by a new photocrosslinking method using 4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl)ketone (Irgacure 2959) as a photoactive radical initiator and N,N′-Methylenebisacrylamide (MBA) as a crosslinking agent. The prepared samples were characterized by X-ray diffraction (XRD), differential scanning calorimetry, stress–strain measurements and UV–Vis spectrophotometry. XRD patterns showed the formation of exfoliation structure resulting in considerable improves in mechanical properties of the nanocomposite. Retaining of transparency also suggested that Na+MMT nanosheets were uniformly distributed in the gelatin matrix. The tensile strength and Elastic’s modulus of nanocomposites were also improved notably by enhancing amount of Na+MMT. Furthermore, gelatin/Na+MMT nanocomposites showed a second T g at a higher temperature in presence of Na+MMT.  相似文献   

7.
Poly(ε-caprolactone) (PCL) masterbatches with the intercalated and the exfoliated morphology were prepared by ring opening polymerization of ε-caprolactone in the presence of organomodified montmorillonite (MMT) Cloisite 30B. Poly(l-lactide) (PLLA) nanocomposites with Cloisite 30B or PCL masterbatches were prepared by melt blending. The effects of the silicate type, MMT content and the nanocomposite morphology on thermal and mechanical properties of PLLA nanocomposites were examined. The montmorillonite particles in PLLA/Cloisite 30B and PLLA/intercalated masterbatch nanocomposites were intercalated. In contrary to expectations, the exfoliated silicate layers of exfoliated masterbatch were not transferred into the PLLA matrix. Due to a low miscibility of PCL and PLLA, MMT remained in the phase-separated masterbatch domains. The stress-strain characteristics of PLLA nanocomposites, Young modulus E, yield stress σy and yield strain εy, decreased with increasing MMT concentration, which is associated with the increase in PCL content. The expected stiffening effect of MMT was low due to a low aspect ratio of its particles and was obscured by both plastifying effects of PCL and low PLLA crystallinity. Interestingly, in contrast to the neat PLLA, ductility was enhanced in all PLLA/Cloisite 30B materials and in PLLA/masterbatch nanocomposites with low MMT concentrations.  相似文献   

8.
蔡杰  张俐娜 《高分子科学》2016,34(10):1281-1289
High strength cellulose composite films with antibacterial activities were prepared by dispersing montmorillonites (MMT) into cellulose solution in LiOH/urea aqueous solvent followed by regeneration in ethanol coagulation bath, and then by soaking in 5 wt% hexadecylpyridine bromide ethanol solutions to induce the antibacterial action. The cellulose/MMT composite films were characterized by field emission scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, FTIR, UV-spectra, wide angle X-ray diffraction and mechanical test. The results revealed that MMT was dispersed well in the cellulose matrix to form layer structure with a thickness of approximately 3 nm. The mechanical properties of the cellulose/MMT composite films were significantly improved to achieve 132 MP for tensile strength as a result of the MMT delamination. The hexadecylpyridine bromide was fixed well in the cellulose/MMT matrix through cation exchange, leading to the excellent antibacterial activities against Staphylococcus aureus and Escherichia coli, which is important in their practical applications.  相似文献   

9.
Use of nanocomposites is a well-established approach in enhancing the mechanical and barrier properties of bionanocomposite film for food packaging applications. The seed mucilage of Ocimum basilicum was employed for the preparation of bionanocomposite films with montmorillonite (MMT) as nanofiller. The films were prepared by solvent-casting method at varied solution pH (1, 3, 5 and 9) and MMT loading (1%, 3%, 5%, 10%, 15% and 20%). The films were characterized for physical, mechanical and barrier properties in addition to microstructure and X-ray diffraction pattern. XRD analysis revealed the exfoliated dispersion of MMT at pH 9, confirming its effective interaction with the bionanocomposite film. Maximum film tensile strength was achieved at a lower MMT load of 5%. Water vapour permeability reduced with increase in MMT loading up to 5%, followed by an increase at higher MMT loadings. Film formed at pH 9 showed tensile strength of 17.3 ± 0.33 MPa and reduced water vapour permeability (WVP) of 0.21 g mm.m−2.hr−1.kPa−1.  相似文献   

10.
The aim of this investigation is to obtain a polymer-based hybrid material with biodegradability, biocompatibility, and good mechanical properties and this object was realized via. in-situ introduction of the unmodified calcium carbonate (CaCO3) into a poly(l-lactic acid) (PLLA) matrix. As verified by the measurements from scanning electron microscopy (SEM), optical microscopy, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA), the hybrid films which possesses a uniform dispersion of calcium carbonate CaCO3 in nano-meter scale, mechanically robustness and thermal stability could be fabricated by a mineralization-alike process. For example, the storage modulus increases from 441 MPa of neat PLLA to 1034 MPa of hybrid film containing 2% (w/w) CaCO3. In addition, the hybrid films display a significant improvement in its UV-exposure resistance.  相似文献   

11.
Clay organifier with propylene oxide‐capped polyethylene glycol (PEG) with amine end group (jeffamines ED600–2003) was synthesized through an ion exchange process between sodium cations in montmorillonite (MMT) and ? NH groups in ED600–2003. The d‐spacing of organoclay was found to be 1.697–1.734 nm compared to 0.96 nm of pristine MMT. Transmission electron microscopy (TEM) was used to determine the molecular dispersion of the clay within ED600. Polyurethane‐urea/montmorillonite (PUU‐MMT) nanocomposites were prepared via in situ polymerization from polyethylene glycol (PEG 400) or 1,4 butane diol (1,4 BD), toluene diisocyanate (TDI), jeffamines ED600–2003, and 1–12 wt% of organoclay. Intercalation of PUU into modified clays was confirmed by X‐ray diffraction (XRD), scanning electron microscopy, and TEM. The barrier properties were significantly reduced; however, the thermal stability was increased in the nanocomposites as compared to the pristine polymer. Nanocomposites exhibited optical clarity and solvent resistance. The mechanical properties and the glass transition temperature of PUU were improved with the addition of organoclay. The incorporation of silicate layers gave rise to a considerable increase in the storage modulus (stiffness), demonstrating the reinforcing effect of clay on the PUU matrix. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In the present study, montmorillonite (MMT) nanoclay and copper oxide (CuO) nanoparticles (NPs) reinforced polyvinylchloride (PVC) based flexible nanocomposite films were prepared via solvent casting technique. Using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA), the structural, morphological and thermal properties of PVC/MMT/CuO nanocomposite films with various loadings of CuO NPs and MMT were investigated. These studies suggested that by the addition of dual nanofillers in the polymer matrix some structural modifications occurred owing to the homogenous dispersion of MMT and CuO NPs within the PVC matrix. The TGA results reveal that the addition of CuO NPs and MMT considerably improved the thermal stability of the nanocomposites. The EMI shielding effectiveness (SE) of nanocomposites was examined in the X-band (8–12 GHz) and Ku-band (12–18 GHz) frequency regions. The EMI SE values were found to be −30 dB (X-band) and −35 dB (Ku-band) for nanocomposites containing 0.3 wt% of CuO NPs and 4.7 wt% of MMT respectively while the shielding was found to be absorption dominant. These results emphasize that PVC/MMT/CuO nanocomposite films can be used as a potential EMI shielding material.  相似文献   

13.
Poly(imide siloxane)(PIS)/titania(TiO2) hybrid nanocomposites with organic-inorganic covalent bonding have been successfully synthesized by sol-gel processes. The PIS copolymer synthesized in this study was characterized by the observed coexisting two segments: the polyimide (PI) segment and polydimethyldiphenylsiloxane segment, and the latter were specially featured with the introduction of a diphenyl group for improved homogeneity.The obtained TiO2 networks in PIS matrix were well dispersed and their average diameter was less than 50 nm. Meanwhile, the PIS/TiO2 hybrid nanocomposite films exhibited good optical transparency at 20 wt% of TiO2 content. The thermal stability, tensile strength and elongation of the nanocomposites decreased with increasing TiO2 content. The glass transition temperature (Tg) and Young’s modulus increased with increasing TiO2 content. The chemical structure and morphologies of PIS/TiO2 hybrid nanocomposites was characterized by Fourier transform infrared spectroscope (FT-IR), X-ray photoelectron spectroscopy (XPS), and transmission electron microscope (TEM). The Tg and thermal stability were measured by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), respectively. The mechanical properties were examined by dynamic mechanical analysis (DMA) under controlled force mode.  相似文献   

14.
Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films’ modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.  相似文献   

15.
A series of flexible polyurethane foam (FPUF) and monolithic polyurethane (PU) sandwich panels reinforced with different contents of TiO2 nanoparticles (0, 0.5 and 1 mass%) have been successfully prepared by compression molding process at room temperature. The influence of TiO2 nanoparticles on the thermal properties of PU matrix has been investigated by thermogravimetric and dynamic mechanical thermal analysis (DMTA). The morphology of porous structure of FPUF sandwich panels has been characterized by scanning electron microscopy. The presence of TiO2 nanoparticles as reinforcement has improved the thermal properties of the FPUF and PU sandwich panel samples. It has been observed that FPUF and PU sandwich panel reinforced with 1 mass% of TiO2 nanoparticles possessed the highest enhancement in thermal properties in all accomplished thermal tests. The DMTA results for the FPUF and PU sandwich panel reinforced with 1 mass% of TiO2 nanoparticles indicated that the storage modulus and loss modulus have increased about 1.22 and 1.25 times, 1.5 and 1.55 times, respectively, compared to pure samples. Furthermore, the glass transition (T g) obtained from the damping factor (tanδ) curves has increased 2 and 1 °C for FPUF and PU sandwich panels, respectively.  相似文献   

16.
A nanocomposite of poly (vinyl alcohol) (PVA) reinforced with various contents of CdS was synthesized by organosols reaction with particle size in the range of nanoscale. The influence of CdS content on the network structure of PVA matrix such as particle size distribution, gel fraction (GF), equilibrium water content (EWC), water absorption (WA), extent of filler reinforcement (γ), volume fraction of polymer (Vs) number of elastically effective chains (NEC), and X-ray diffraction (XRD) were investigated. The affine and phantom models for physical crosslinks were used to predict the nature of crosslinks. The thermal behavior of PVA-CdS composites has been studied by differential thermal analysis (DTA), Thermogravimetry (TG) and differential scanning calorimetry (DSC). The dc conductivity of the PVA system reinforced with CdS as a function of concentration and temperature has been presented. The PVA composite exhibits considerably high electronic conductivity which increases linearly with the increase of CdS content. The conduction mechanism in PVA-CdS composites is governing by hopping mechanism. The effects of CdS loading and temperature on the thermal conductivity (λ) and specific heats (Cp) were investigated. The antistatic properties and electromagnetic wave shielding effectiveness (EMI) of PVA-CdS composites has been also investigated. The optical properties such as absorbance and transient photo current under applied voltage of PVA-CdS composites were tested. The mechanical properties of PVA-CdS composites were investigated in details. It is proved that the PVA-CdS composites can be effectively used for linear thermistors, antistatic charge dissipation, EMI in the encapsulation of electronic devices, in woven texturing, optical switch and solar cell fabrication.  相似文献   

17.
Blend films of sodium alginate and polyacrylamide (PAAm) were prepared by mixing the aqueous solution of both samples at a different ratio. All blend films obtained are optically clear to the naked eye. The structure and physical properties of the films were studied by FT-infrared (FT-IR), wide angle X-ray diffraction (WAXD), differential thermal analysis (DTA), thermogravimetic analysis (TGA), scanning electron microscopy (SEM), and tensile strength test. The results showed that the occurrence of interactions between -COO?, -OH groups of sodium alginate and -CONH2 groups of PAAm in the blends through hydrogen formation. The blend films exhibited the higher thermal stability and improved mechanical properties in dry states. These properties had the maximum value around 20 wt% PAAm content in the blend film. The morphological transition of the blend films from sodium alginate-like to PAAm-like was observed by scanning electron microscopy.  相似文献   

18.

The structure of acrolein-modified chitosan films was studied by IR spectroscopy. Modification makes the films more hydrophobic. The physical and mechanical properties of films modified with acrolein solutions of low concentrations are improved relative to the unmodified films. The glass transition and decomposition temperatures of the samples were determined by dynamic mechanical and thermal gravimetric analysis. The possibility of using the materials for the development of matrices for tissue engineering was demonstrated.

  相似文献   

19.
Poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by in situ suspension polymerization. MMT was previously organically modified by three different intercalating agents: methacrylatoethyl trimethyl ammonium chloride (DMC), dodecylamine (12CNH), and hexadecyl allyl ammonium chloride (HADC). The structures of the nanocomposites were investigated by X-ray diffraction and transmission electron microscopy, while the interaction between PMMA and MMT was characterized by Fourier transform infrared spectroscopy. The molecular mass of the extracted PMMA was measured by gel permeation chromatography. The thermal stability of PMMA/MMT nanocomposites was evaluated by thermogravimetric and differential scanning calorimetry. The results indicated that PMMA/MMT nanocomposites were successfully prepared and the interaction between PMMA and MMT of PMMA/MMT–HADC nanocomposites was the strongest. The thermal stability of the nanocomposites was improved and found to be optimal for PMMA/MMT–HADC with T 10 increasing to 304 °C, 52 °C higher than that of neat PMMA.  相似文献   

20.
Gamma-ray irradiation is a very useful tool to improve the physicochemical properties of various biodegradable polymers without the use of a heating and crosslinking agent. The purpose of this study was to investigate the degradation behavior of poly (l-lactide-co-glycolide) (PLGA) depending on the applied gamma-ray irradiation doses. PLGA films prepared through a solvent casting method were irradiated with gamma radiation at various irradiation doses. The irradiation was performed using 60Co gamma-ray doses of 25–500 kGy at a dose rate of 10 kGy/h.The degradation of irradiated films was observed through the main chain scission. Exposure to gamma radiation dropped the average molecular weight (Mn and Mw), and weakened the mechanical strength. Thermograms of irradiated film show various changes of thermal properties in accordance with gamma-ray irradiation doses. Gamma-ray irradiation changes the morphology of the surface, and improves the wettability. In conclusion, gamma-ray irradiation will be a useful tool to control the rate of hydrolytic degradation of these PLGA films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号