首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Separation method of Zr using trans uranium resin (TRU resin) and tetra valent actinide resin (TEVA resin) was developed for the analysis of 93Zr contained in the rubble waste. Zr, Nb, and U were quantitatively extracted on the TRU resin from 3 M HNO3 and striped with 0.01 M HF, in addition, some part of Mo, Hg, Bi, and Th were also included in the stripping solution. The stripping solution was evaporated to eliminate HNO3 and the residue was dissolved in 0.1 M HF. Finally, Zr was separated from Nb and Mo with the TEVA resin.  相似文献   

2.
Americium from analytical solid waste containing U and metallic impurities was separated using hollow fiber supported liquid membrane (HFSLM) technique impregnated with DHOA–TODGA from nitric acid medium. An aliquot of 5 g of the solid waste containing Am (19.95 mg) as minor actinide and of U (2,588 mg), Fe (1,360 mg), Ca (1,810 mg) and Na (3,130 mg) as major impurities was processed. The feed solution obtained after the dissolution of the residue in ~4 M HNO3 was passed through HFSLM module. In the first stage using 1 M DHOA–dodecane U was recovered while Am and other impurities were left in the raffinate. In the second stage, 0.5 M DHOA + 0.1 M TODGA/dodecane was used for the separation of Am from other impurities. Though, majority of the elements were separated in this cycle, Ca was co extracted along with the americium. CMPO extraction chromatographic technique was used for further separation of americium from Ca. Significant decontamination factors were achieved in this three step separation process with respect to U, Fe, Na and Ca with ~77 % recovery of americium.  相似文献   

3.
In order to develop a direct separation process for trivalent minor actinides from fission products in high level liquid waste (HLLW) by extraction chromatography, a novel macroporous silica-based 2,6-bis(5,6-diisohexyl)-1,2,4-triazin-3-yl)pyridine resin (isohexyl-BTP/SiO2-P resin) was prepared. The content of isohexyl-BTP extractant in the resin was as high as 33.3 wt%. The resin exhibited much higher adsorption affinity for Am(III) in 2–3 M (mol/L) HNO3 solution over U and FP which are contained in HLLW. The kinetic data were analyzed using pseudo-second-order equation. The results suggested that the Eu(III), Gd(III), and Dy(III) adsorption was well explained by the pseudo-second-order equation. Quantitative desorption for adsorbed elements was achieved by using H2O or thiourea as eluting agents. However, the kinetics of adsorption and desorption were rather slow and this drawback needs to be resolved. Stability of the resin against HNO3 was also examined. It was found that the resin was considerably stable against ≤4 M HNO3 solution for the reasons of an extremely small leakage of the extractant into the solution from the resin and the adsorption performance keeping for rare earths in 3 M HNO3 solution.  相似文献   

4.
This paper presents a rapid method of separation of five actinide elements (Th, U, Np, Pu, and Am) for aqueous media samples. This separation method utilizes the unique chemistries of the actinides at low concentrations1,2 and the properties of the EIChroM TRU-ResinTM extraction resin. In order to cleanly recover the five actinides from aqueous samples or solubilized soil samples, the sample is passed through the column twice. The sample is first loaded in an HCl solution with hydrogen peroxide. This allows the Am and most matrix ions to pass through the column. Then the Th is eluted using dilute HCl followed by the Np and Pu which are eluted together with oxalic acid in dilute HCl solution. Finally, the U is eluted with ammonium oxalate solution. A calcium-oxalate coprecipitation is performed on the original load solution containing the Am ions and the dissolved precipitate is then reloaded onto the TRU-ResinTM column in HNO3 with ascorbic acid. The procedure requires approximately 1.5 working days for experienced technicians, greatly reduces waste, and generally results in actinide recoveries of 80–100%.  相似文献   

5.
To simplify TRPO process, a novel ligand, N,N’-dimethyl-3-oxa-glutaramic acid (DMOGA), was synthesized and used for stripping of An(III, IV) from 30% TRPO-kerosene. The distribution ratios for transuranium elements, including Np(IV), Pu(IV), Am(III), and some fission products, including Eu(III), Fe and Zr between 30% TRPO-kerosene and various HNO3-DMOGA solutions were measured. An(III, IV) and Ln(III) extracted to TRPO from simulated high level liquid waste could be recovered with an efficiency of 99.9% above in one stream with a 3-stage crosscurrent strip experiment with 0.2M DMOGA in HNO3 solution. Using this new agent, the back extraction of TRU elements from loaded TRPO phase becomes more simple and practical. Therefore, the original TRPO process could be simplified.  相似文献   

6.
The extraction of Am, Eu, Ce(III), Zr(IV), and Sr from aqueous nitric acid— nitrate media by dibutyl N,N-diethylcarbamylphosphonate and dibutyl N,N-diethylcar-bamylmethylenephosphonate dissolved in carbon tetrachloride was studied. The trivalent actinide and lanthanide elements may be separated in certain aqueous phase acidity regions from Fe(III), Zr(IV), and Sr, whereas the separation of actinide elements from the lanthanide elements is poor. The extractant to metal ratio in the extracted complexes of Am, Eu, and Ce(III) is 3. The interferences in the extraction due to acidic impurities in the extracting agent are discussed.  相似文献   

7.
8.
The distribution coefficients of californium and other elements between an anion exchange resin and alcohol solutions of nitric acid of different concentrations have been determined. An effective method is suggested for the purification of californium from other elements which are slightly adsorbed when Cf is concentrated on an anion exchanger from 0.5–1.0N solutions of nitric acid containing 95–90% alcohol; Cf is subsequently eluted with a 0.5N HNO3 solution in 85% CH3OH and simultaneously separated from the elements which are strongly adsorbed on the anion exchange resin. Under the chosen conditions the coefficients of californium purification were determined for a number of elements; the values are 5.4·102–1.8·103 for Al, Ca, Fe and ∼103–105 for Am, Pm, Nd, Ce, Pb, Bi and Na, for one cycle.  相似文献   

9.
A comprehensive thermodynamic model, referred to as the Mixed-Solvent Electrolyte model, has been applied to calculate phase equilibria and chemical speciation in selected aqueous actinide systems. The solution chemistry of U(IV, VI), Np(IV, V, VI), Pu(III, IV, V, VI), Am(III), and Cm(III) has been analyzed to develop the parameters of the model. These parameters include the standard-state thermochemical properties of aqueous and solid actinide species as well as the ion interaction parameters that reflect the solution’s nonideality. The model reproduces the solubility behavior and accurately predicts the formation of competing solid phases as a function of pH (from 0 to 14 and higher), temperature (up to 573 K), partial pressure of CO2 (up to \( p_{{{\text{CO}}_{2} }} \)  = 1 bar), and concentrations of acids (to 127 mol·kg?1), bases (to 18 mol·kg?1), carbonates (to 6 mol·kg?1) and other ionic components (i.e., Na+, Ca2+, Mg2+, OH?, Cl?, \( {\text{ClO}}_{4}^{ - } \), and \( {\text{NO}}_{3}^{ - } \)). Redox effects on solubility and speciation have been incorporated into the model, as exemplified by the reductive and oxidative dissolution of Np(VI) and Pu(IV) solids, respectively. Thus, the model can be used to elucidate the phase and chemical equilibria for radionuclides in natural aquatic systems or in nuclear waste repository environments as a function of environmental conditions. Additionally, the model has been applied to systems relevant to nuclear fuel processing, in which nitric acid and nitrate salts of plutonium and uranium are present at high concentrations. The model reproduces speciation and solubility in the U(VI) + HNO3 + H2O and Pu(IV, VI) + HNO3 + H2O systems up to very high nitric acid concentrations (\( x_{{{\text{HNO}}_{3} }} \approx 0.70 \)). Furthermore, the similarities and differences in the solubility behavior of the actinides have been analyzed in terms of aqueous speciation.  相似文献   

10.
The binary systems of iron(II) and iron(III) with 2-pyridineformamide thiosemicarbazone (H2Am4DH) and its N(4)-methyl (H2Am4Me), N(4)-ethyl (H2Am4Et) and N(4)-phenyl (H2Am4Ph) derivatives were studied in aqueous solution by pH-potentiometry, ultraviolet–visible spectroscopy and EPR spectra. The formation constants of the iron(II) and iron(III) complexes were calculated from potentiometric and electronic absorption data at 25 °C and ionic strength μ = 0.1 mol·L?1 using the HYPERQUAD program. The values of the formation constant of the FeL species decrease in the order Fe:H2Am4DH > Fe:H2Am4Me ≈ Fe:H2Am4Et > Fe:H2Am4Ph in the same way as the basicity of the ligands. The species distribution diagrams show that the species FeL2 predominates at physiological pH in the Fe:H2Am4DH, Fe:H2Am4Me and Fe:H2Am4Et systems. The similar EPR spectra of these iron(III) binary systems indicate the same coordination spheres around the metallic center and the EPR g values suggests that the unpaired electron is in the dxy orbital, indicating a d xz 2 d yz 2 d xy 1 ground state configuration for the complexes. For the Fe(III):H2Am4Ph system the EPR results indicated dimerization and antiferromagnetic interaction due to the presence of only one thiosemicarbazone ligand around the metallic center.  相似文献   

11.
To separate minor actinides from high level liquid waste (HLLW) of PUREX reprocessing, a silica-based macroporous isobutyl-BTP/SiO2-P adsorbent was synthesized by impregnating isobutyl-BTP (2,6-di(5,6-diisobutyl-1,2,4-triazin-3-yl)pyridine) extractant into the macroporous SiO2-P support with a mean diameter of 60 μm. A partitioning process using extraction chromatography for the treatment of HLLW was designed consisting five separation columns. As a partly work focused on isobutyl-BTP/SiO2-P separation column, adsorption behavior of 241Am and trivalent rare earth (RE) from simulated HLLW onto silica-based isobutyl-BTP/SiO2-P adsorbent was investigated by batch method. Meanwhile, the chemical and radiolytic stabilities of isobutyl-BTP/SiO2-P adsorbent against 0.01 M HNO3 solution and γ-ray irradiation were studied. It was found that isobutyl-BTP/SiO2-P adsorbent exhibited good adsorption selectivity for 241Am over RE(III) in 0.01 M HNO3 solution and showed weak or no adsorption affinity to light and middle RE(III) groups. In addition, in stability experiments, isobutyl-BTP adsorbent showed excellent stability against 0.01 M HNO3 solution and γ-ray irradiation over 4 months contact time.  相似文献   

12.
Extraction chromatography with commercially available UTEVA resin (for uranium and tetravalent actinide) was applied for the separation of Th and U from control solutions prepared from a multi-element control solution and from sample solutions of solidified simulated waste. Thorium and U in control solutions with 1-5mol/dm(3) HNO(3) were extracted with UTEVA resin and recovered with a solution containing 0.1mol/dm(3) HNO(3) and 0.05mol/dm(3) oxalic acid to be separated from the other metallic elements. Extraction behavior of U in the sample solutions was similar to that in the control solutions, but extraction of Th was dependent on the concentration of HNO(3). Thorium was extracted from 5mol/dm(3) HNO(3) sample solutions but not from 1mol/dm(3) HNO(3) sample solutions. We conjecture that thorium fluoride formation interferes with extraction of Th. Addition of Al(NO(3))(3) and Fe(NO(3))(3), which have higher stability constant with fluoride ion than Th, does improve extractability of Th from 1mol/dm(3) HNO(3) sample solution.  相似文献   

13.
Silica-gel has been used as an inert support for the extraction chromatographic separation of actinides and lanthanides from HNO3 and synthetic high level waste (HLW) solutions. Silica-gel was impregnated with tri-butyl phosphate (TBP), to yield STBP; 2-ethylhexyl phosphonic acid, mono 2-ethylhexyl ester (KSM-17, equivalent to PC-88A), SKSM; octyl(phenyl)-N,N-diisobutyl carbamoylmethylphosphine oxide (CMPO), SCMPO; and trialkylphosphine oxide (Cyanex-923), SCYN and sorption of Pu(IV), Am(III) and Eu(III) from HNO3 solutions was studied batchwise. Several parameters, like time of equilibration, HNO3 and Pu(IV) concentrations were varied. The uptake of Pu(IV) from 3.0M HNO3 followed the order SCMPO>SCYN>SKSM>STBP. With increasing HNO3 concentration, D Pu increased up to 3.0M of HNO3 for STBP, SKSM and SCMPO and then decreased. In the case of Am and Eu with SCMPO, the D values initially increased between 0.5 to 1.0M of HNO3, remained constant up to 5.0M and then slightly decreased at 7.5M. Also, the effects of NaNO3, Nd(III) and U(VI) concentrations on the uptake of Am(III) from HNO3 solutions were evaluated. With increasing NaNO3 concentration up to 3.0M, D Am remained almost constant while it was observed that it decreases drastically by adding Nd(III) or U(VI). The uptake of Pu and Am from synthetic pressurized heavy water reactor high level waste (PHWR-HLW) in presence of high concentrations of uranium and after depleting the uranium content, and finally extraction chromatographic column separation of Pu and Am from U-depleted synthetic PHWR-HLW have been carried out. Using SCMPO, high sorption of Pu, Am and U was obtained from the U-depleted HLW solution. These metal ions were subsequently eluted using various reagents. The sorption results of the metal ions on silica-gel impregnated with several phosphorus based extractants have been compared. The uptake of Am, Pu and rare earths by SCMPO has been compared with those where CMPO was sorbed on Chromosorb-102, Amberchrom CG-71 and styrene divinylbenzene copolymer immobilized in porous silica particles.  相似文献   

14.
The synthesis of a novel 5-(4-vinylphenyl)-CyMe4-BTPhen actinide selective ligand using selenium free synthetic procedures is reported. For the first time, we report the electrospinning of this actinide selective ligand into a polystyrene fiber and investigate its selective removal of Am(III) from Eu(III) and Am(III) from Cm(III). At 4?M HNO3, the resulting fibrous solid extractant produced separation factors of SFAm/Eu?≈?57 and a small, but significant separation of SFAm/Cm?≈?2.9.  相似文献   

15.

The separation of americium(III) from europium(III) was achieved utilizing a bis-2,6-(5,6,7,8-tetrahydro-5,9,9-trimethyl-5,8-methano-1,2,4-benzotriazin-3-yl) pyridine (CA-BTP) chromatographic resin. The extraction chromatographic materials were prepared using various concentrations of CA-BTP. This new, hydrolytically stable extractant was impregnated on an inert polymeric support at 40% loading. The uptake of Am(III) and Eu(III) by this material from 0.1 to 4.0 M aqueous HNO3 solutions was measured. The resulting dry weight distribution ratios, D w , indicated a strong preference for Am(III) with little affinity for Eu(III). These results are similar to recently reported solvent extraction studies indicating a maximum uptake of Am(III) in the 0.5–1.0 M HNO3 range. The resin preparation, performance, and characterization of the Am/Eu separation are reported herein.

  相似文献   

16.
《中国化学快报》2022,33(7):3439-3443
A process for actinide(III) and lanthanum(III) extraction separation from high-level liquid waste (HLLW) was proposed, with N,N,N',N'-tetraoctyl diglycolamide (TODGA) as the extractant, tri-n?butyl phosphate (TBP) as the phase modifier and 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol or PTD) as hydrophilic stripping agent. This ‘hot test’ was successfully carried out, achieving 99.92% removal of americium-241 (241Am) with a separation factor SF(Eu/Am) of 3.8 × 103 in the actinide(III) product solution. The results show that bisamide podand extractants can effectively realize the extraction and separation of actinide(III) and lanthanum(III) from Chinese commercial HLLW and thus have a bright practical application potential for the treatment of commercial HLLW.  相似文献   

17.
《Analytical letters》2012,45(3):488-497
An analytical method using sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) for rapid simultaneous determination of Na, Mg, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Sr, Mo, and Cd elements in hepatocellular carcinoma (HCC) tissue is reported. The sample was dissolved in HNO3 and H2O2 by microwave digestion and then the aforementioned 15 elements in the solution were analyzed directly by SF-ICP-MS. Most of the spectral interferences were avoided by measuring in medium resolution mode (MRM, M/?M = 4400) and high resolution mode (HRM, M/ΔM = 8000). Correction for matrix effects was made using Sc and Rh as internal standards. The optimum conditions for the determination were tested and discussed. The results showed that SF-ICP-MS is a useful tool for simultaneous determination of multi-elements in HCC tissue and could be widely used in other biological samples analysis.  相似文献   

18.
Dissolution of UO2, U3O8, and solid solutions of actinides in UO2 in subacid aqueous solutions (pH 0.9–1.4) of Fe(III) nitrate was studied. Complete dissolution of the oxides is attained at a molar ratio of ferric nitrate to uranium of 1.6. During this process actinides pass into the solution in the form of U(VI), Np(V), Pu(III), and Am(III). In the solutions obtained U(VI) is stable both at room temperature and at elevated temperatures (60 °C), and at high U concentrations (up to 300 mg mL?1). Behavior of fission products corresponding to spent nuclear fuel of a WWER-1000 reactor in the process of dissolution the simulated spent nuclear fuel in ferric nitrate solutions was studied. Cs, Sr, Ba, Y, La, and Ce together with U pass quantitatively from the fuel into the solution, whereas Mo, Tc, and Ru remain in the resulting insoluble precipitate of basic Fe salt and do not pass into the solution. Nd, Zr, and Pd pass into the solution by approximately 50 %. The recovery of U or jointly U + Pu from the dissolution solution of the oxide nuclear fuel is performed by precipitation of their peroxides, which allows efficient separation of actinides from residues of fission products and iron.  相似文献   

19.
Cross-linked hydrogel matrices immobilized with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (HA), were prepared to investigate their application in the recovery of radionuclide from acidic waste solutions. Gamma-radiation was used to produce HA immobilized polyvinyl alcohol (PVA) hydrogels (HA-gel). The hydrogels with different characteristics such as: degree of cross-linking (by varying radiation dose) and quantity of extractant immobilized (by starting with aqueous PVA solution containing different amounts of HA), were synthesised. These HA-gels were investigated for solid-liquid phase extraction of U(VI), Pu(IV), Am(III) and some fission products, under various experimental conditions. The concentration of HNO3 in the aqueous phase was found to play an important role in the extraction of these radionuclei. Extraction of U(VI) was more favourable at lower concentration of HNO3 (∼0.001 to 0.5M), while at higher concentrations (∼0.5 to 3M HNO3), more than 90% of Pu(IV) present in the aqueous phase, could be extracted by the HA-gel. The extraction of Am(III) was also found predominant only at lower acidities (at pH∼2 and above). Under optimized conditions, maximum metal loading capacities obtained were 19±0.8 mg, 8±0.4 mg and 11±0.5 mg per gram of swollen HA-gel, for U(VI), Pu(IV) and Am(III), respectively. Under the experimental conditions, extractions of Cs(I) and Sr(II) were observed to be negligible. No leaching out of HA from the HA-gel particles was noted even after its repetitive use for the studied ten cycles of extraction and stripping experiments, as evident from its unchanged extraction efficiency.  相似文献   

20.
The relative stability of different oxidation states of actinide elements is influenced by the nature of complexes formed and redox equilibria in aqueous/non-aqueous solutions. The reduction/stripping studies on Pu(IV) ions from loaded organic phases of 1.1 M tributyl phosphate and of 1.1 M N,N-dihexyl octanamide in n-dodecane were studied using organic soluble tert-butyl hydroquinone (TBH) and aqueous soluble reductants like acetaldoxime (AX) and hydroxyurea (HU). These studies were carried out as a function of reductant and nitric acid concentration (0.5–4 M HNO3) and of time. The changes in Pu oxidation states were followed by spectrophotometry for TBH and by distribution ratio values for AX and HU as reductants. Spectrophotometric investigations using TBH as reductant showed that it was desirable to strip Pu(III) formed after reduction of Pu(IV) in the organic phase, which may otherwise be reconverted to extractable Pu(IV) by in situ generated HNO2 from oxidative degradation of TBH to tert-butyl quinone. Similarly, the biphasic reduction/stripping of Pu(IV) using AX and HU as reductant rate was affected adversely with increased aqueous phase acidity. This data will help in the accurate simulation of Pu separation processes using these reductants in mixer-settlers/pulsed columns or centrifugal contactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号