首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Single‐crystal X‐ray diffraction analysis of [2,6‐(Me2NCH2)2C6H3]2SnF2 reveals that only one of the two dimethylaminomethyl groups of each pincer‐type ligands [2,6‐(CH2NMe2)2C6H3]? is coordinated to the tin atom at Sn‐N distances of 2.576(2) and 2.470(2) Å, inducing chirality of the latter. The tin atom exhibits a distorted octahedral trans(C,C)cis(N,N)cis(F,F) configuration. Extensive intra‐ and intermolecular C‐H···F hydrogen bonding is observed with the latter giving rise to formation of polymeric chains.  相似文献   

2.
Crystal Structure and Vibrational Spectrum of (H2NPPh3)2[SnCl6]·2CH3CN Single crystals of (H2NPPh3)2[SnCl6]·2CH3CN ( 1 ) were obtained by oxidative addition of tin(II) chloride with N‐chloro‐triphenylphosphanimine in acetonitrile in the presence of water. 1 is characterized by IR and Raman spectroscopy as well as by a single crystal structure determination: Space group , Z = 2, lattice dimensions at 193 K: a = 1029.6(1), b = 1441.0(2), c = 1446.1(2) pm, α = 90.91(1)°, β = 92.21(1)°, γ = 92.98(1)°, R1 = 0.0332. 1 forms an ionic structure with two different site positions of the [SnCl6]2? ions. One of them is surrounded by four N‐hydrogen atoms of four (H2NPPh3)+ ions, four CH3CN molecules form N–H···N≡C–CH3 contacts with the other four N‐hydrogen atoms of the cations. Thus, 1 can be written as [(H2NPPh3)4(CH3CN)4(SnCl6)]2+[SnCl6]2?.  相似文献   

3.
Transition-Metal Substituted Phosphaalkenes and Acyl Phosphanes. 31 [1] Reactivity of (η5-C5Me5)(CO)2FeP = C(NMe2)2 towards Tin Dichloride. X-Ray Structure Analysis of {(η5-C5Me5)[η1-(Me2N)2C = P? P = C(NMe2)2](CO)2Fe}+{[Me2N)2C]2P}+(FeCl4)2? Reaction of metallophosphaalkene (η5-C5Me5)(CO)2 · FeP = C(NMe2)2 ( 1 ) with anhydrous tin dichloride affords the salt-like compound {(η5-C5Me5)[η1-(Me2N)2C = P? P = C(NMe2)2] · (CO)2Fe}+{[(Me2N)2C]2P}+(FeCl4)2? 5 which is characterized by single crystal X-ray analysis and spectra (IR, 1H, 31P-NMR).  相似文献   

4.
The novel phosphonyl‐substituted ferrocene derivatives [Fe(η5‐Cp)(η5‐C5H3{P(O)(O‐iPr)2}2‐1,2)] ( Fc1,2 ) and [Fe{η5‐C5H4P(O)(O‐iPr)2}2] ( Fc1,1′ ) react with SnCl2, SnCl4, and SnPh2Cl2, giving the corresponding complexes [(Fc1,2)2SnCl][SnCl3] ( 1 ), [{(Fc1,1′)SnCl2}n] ( 2 ), [(Fc1,1′)SnCl4] ( 3 ), [{(Fc1,1′)SnPh2Cl2}n] ( 4 ), and [(Fc1,2)SnCl4] ( 5 ), respectively. The compounds are characterized by elemental analyses, 1H, 13C, 31P, 119Sn NMR and IR spectroscopy, 31P and 119Sn CP‐MAS NMR spectroscopy, cyclovoltammetry, electrospray ionization mass spectrometry, and single‐crystal as well as powder X‐ray diffraction analyses. The experimental work is accompanied by DFT calculations, which help to shed light on the origin for the different reaction behavior of Fc1,1′ and Fc1,2 towards tin(II) chloride.  相似文献   

5.
Synthesis and Crystal Structure of the Heterobimetallic Diorganotindichloride (FcN, N)2SnCl2 (FcN, N: (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2}) The heterobimetallic title compound [(FcN, N)2SnCl2] ( 1 ) was obtained by the reaction of [LiFcN, N] with SnCl4 in the molar ratio 1:1 in diethylether as a solvent. The two FcN, N ligands in 1 are bound to Sn through a C‐Sn σ‐bond; the amino N atoms of the side‐chain in FcN, N remain uncoordinated. The crystals contain monomeric molecules with a pseudo‐tetrahedral coordination at the Sn atom: Space group P21/c; Z = 4, lattice dimensions at —90 °C: a = 9.6425(2), b = 21.7974(6), c = 18.4365(4) Å, β = 100.809(2)°, R1obs· = 0.051, wR2obs· = 0.136.  相似文献   

6.
Chloride ligand substitution reactions of tert-butyl- and arylimido-titanium complexes supported by the pendant arm functionalised N-trimethylsilyl benzamidinate ligand Me3SiNC(Ph)NCH2CH2CH2NMe2 are described. Reaction of previously-described [Ti(NtBu){Me3SiNC(Ph)NCH2CH2CH2NMe2}Cl] (1) with PhLi afforded thermally sensitive [Ti(NtBu){Me3SiNC(Ph)NCH2CH2CH2NMe2}Ph] (2). The corresponding reaction of 1 with MeLi afforded [Ti(NtBu){Me3SiNC(Ph)NCH2CH2CH2NMe2}Me] (3) detected by 1H-NMR spectroscopy but this compound could not be isolated. Reaction of 1 with LiCH2SiMe3 gave a complex mixture, but with LiN(SiMe3)2 and LiO-2,6-C6H3Me2 the compounds [Ti(NtBu){Me3SiNC(Ph)NCH2CH2CH2NMe2}X] (X=N(SiMe3)2 (4) or O-2,6-C6H3Me2 (5)) were isolated. The X-ray structure of 5 was determined. Reaction of the homologous compound [Ti(NtBu){Me3SiNC(Ph)NCH2CH2NMe2}Cl] (6) (containing a 2-carbon atom chain in the pendant arm) with MeLi or PhLi were unsuccessful although the aryloxide compound [Ti(NtBu){Me3SiNC(Ph)NCH2CH2NMe2}(O-2,6-C6H3Me2)] (7) could be isolated from the reaction of 6 with LiO-2,6-C6H3Me2. Reaction of the 3-carbon pendant arm arylimido compound [Ti(N-2,6-C6H3Me2){Me3SiNC(Ph)NCH2CH2CH2NMe2}Cl] (8) with MeLi afforded thermally sensitive [Ti(N-2,6-C6H3Me2){Me3SiNC(Ph)NCH2CH2CH2NMe2}Me] (9), and although the analogous phenyl homologue was elusive, the aryloxide derivative [Ti(N-2,6-C6H3Me2){Me3SiNC(Ph)NCH2CH2CH2NMe2}(O-2,6-C6H3Me2)] (10) was successfully isolated and structurally characterised. Comparison of the X-ray structures of 5 and 10 show unexpectedly large differences between the TiNR and TiOAr bond lengths in the two compounds.  相似文献   

7.
The reaction of Me3SbCl2 and (Me2SnS)3 afforded the complex (Me3SbS)2Me2SnCl2 in high yields, whose molecular structure features both hypercoordinated tin and antimony atoms. In solution, (Me3SbS)2Me2SnCl2 undergoes a reversible dissociation and ligand interchange reaction to give Me3SbS, Me3SbCl2 and (Me2SnS)3.  相似文献   

8.
In this article the kinetics of the interaction between the teteraaza Schiff bases as donor with organotin(IV)chlorides as acceptor was studied in acetonitrile. Teteraaza Schiff bases are (Me4‐Bzo2[14]tetraeneN4) (tmtaa), (Me4‐4‐CH3Bzo2[14]tetraeneN4) (Metmtaa), (Me4‐4‐ClBzo2[14]tetraeneN4) (Cltmtaa), i.e., [(Me4‐Bzo2[14]tetraeneN4)] means that (5,7,12,14‐tetramethyldibenzo[b,i][1,4,8,11] tetraazacyclotetradecine) (tmtaa) and organotin(IV)chlorides are methyltin(IV) trichloride, phenyltin(IV)trichloride, dimethyltin (IV)dichloride, diphenyltin(IV) dichloride, and dibutyltin(IV)dichloride. The kinetic parameters and the second‐order k2 rate constants show the donor properties of tetraaza Schiff bases as Me4‐4‐CH3Bzo2[14]tetraeneN4 > Me4‐Bzo2[14]tetraeneN4 > Me4‐4‐ClBzo2[14]tetraeneN4 and also the acceptor properties of organotin(IV)chlorides as PhSnCl3 > MeSnCl3 > Ph2SnCl2 > Me2SnCl2 > Bu2SnCl2. An excellent linearity of kobs vs. the molar concentration of the acceptor, the high span of k2 values, the large negative values of ΔS, and the low ΔH values suggest an associative (A) mechanism for the acceptor–donor interaction. © 2011 Wiley Peiodicals, Inc. Int J Chem Kinet 43: 247–254, 2011  相似文献   

9.
Bis(silylamino)tin dichlorides 1 [X2SnCl2 with X=N(Me3Si)2 (a), N(9-BBN)SiMe3 (b), N(tBu)SiMe3 (c), and N(SiMe2CH2)2 (d)] were prepared from the reaction of two equivalents of the respective lithium amides (Li-a-d) with tin tetrachloride, SnCl4, or from the 1:1 reaction of the respective bis(amino)stannylene with SnCl4. The compounds 1 react with two equivalents of lithium alkynides LiCCR1 to give the di(1-alkynyl)-bis(silylamino)tin compounds X2Sn(CCR1)2, 2 (R1=Me), 3 (R1=tBu), and 4 (R1=SiMe3). Problems were encountered, mainly with LiCCtBu as well as with 1b, since side reactions also led to the formation of 1-alkynyl-bis(silylamino)tin chlorides 5-7 and tri(1-alkynyl)(silylamino)tin compounds 8 and 9. 1,1-Ethylboration of compounds 2-4 led to stannoles 10, 11, and in the case of propynides, also to 1,4-stannabora-2,5-cyclohexadiene derivatives 12. The molecular structure of the stannole 11b (R1=SiMe3) was determined by X-ray analysis. The reaction of 2a and d with triallylborane afforded novel heterocycles, the 1,3-stannabora-2-ethylidene-4-cyclopentenes 14. These reactions proceed via intermolecular 1,1-allylboration, followed by an intramolecular 1,2-allylboration to give 14, and a second intramolecular 1,2-allylboration leads to the bicyclic compounds 15.  相似文献   

10.
Principal results and trends in chemistry of organic derivatives of divalent silicon, germanium, and tin containing bonds between these elements and the halogen, nitrogen, oxygen, and sulfur atoms are briefly surveyed. Selected characteristics of compounds with the element--phosphorus and element--arsenic bonds are discussed for comparison. Data on the synthesis and structures of new types of these compounds, viz., germanium(ii) diacylates, the alkoxy derivatives E14(OR)2 and E14(OR)Y (E14 = Ge, Sn; R = Me2NCH2CH2; Y = Cl, AcO, (Me3Si)2N), and the ate-complexes Li(+)[E14(OCH2CH2NMe2)3](–) and [Li(thf)2](+)[TsiE14(SBu)2](–) (E14 = Ge, Sn; Tsi = (Me3Si)3C), are presented. It was established for the first time that germanium(ii) and tin(ii) derivatives can be stabilized in the monomeric form only through the intramolecular Nsp3E14 coordination bonds and the -acceptor effect of the oxygen atoms without introduction of bulky substituents.  相似文献   

11.
二(硅烃基亚甲基)锡二芳香羧酸酯的合成和结构表征   总被引:2,自引:0,他引:2  
自从Brown[1]、Crowe[2]等报道了一些有机锡化合物具有较好的抗癌活性以来,这一领域的研究引起了人们极大的兴趣。大量的研究结果表明,二烃基锡化合物具有比其相应的单烃基锡、三烃基锡或四烃基锡化合物更好的抗癌活性,因此,目前国内外对二烃基锡化合物研究十分活跃[3,4]。在文  相似文献   

12.
Chemical Reactions in Molten Salts. XIX. Synthesis of Dimethyltin Dichloride, (CH3)2SnCl2 The synthesis of (CH3)2SnCl2 starting from CH3Cl and molten tin has been achieved with high space-time-yield (RZA) under catalysis of a NaAlCl4 melt. The reaction does not procceed directly, but via an addition of CH3Cl to SnCl2 forming CH3SnCl3, which is reduced by the tin metal, and followed by another addition of CH3Cl. The optimum reaction conditions have been investigated for the technical scale operation.  相似文献   

13.
Silyldiazoalkanes Me3Si(LnM)CN2 (LnM = Me3Si, Me3Ge, Me3Sn, Me3Pb; Me3As, Me3Sb, Me3Bi) have been synthesized by three different routes: (a) reactions of the Me3SiCHN2 with metal amides LnMNR1R2 of Group IVB and VB elements, using Me3SnCl as catalyst; (b) reactions of the in situ prepared organolithium compound Me3SiC(Li)N2 with organometallic chlorides Me3MCl (M = Si, Ge); (c) tincarbon bond cleavage reaction of (Me3Sn)2CN2 with Me3SiN3, affording Me3SnN3, traces of bis(trimethylsilyl)diazomethane (Me3Si)CN2, trimethylsilyl(trimethylstannyl)diazomethane Me3Si(Me3Sn)CN2 and bis(trimethylsilyl)aminoisocyanide (Me3Si)2NNC as the major reaction products. IR and NMR data (1H, 13C, 29Si, 119Sn, 207Pb) of the new heterometal-diazoalkanes are reported and discussed in comparison to relevant compounds of the organometallic diazoalkane series.  相似文献   

14.
Preparation and Properties of 3-(N,N-Dimethylamino)propyl Thallium Compounds TlCl3 reacts with Me2NCH2CH2CH2Li in molar ratio 1:2 with formation of (Me2NCH2CH2CH2)2TlCl ( 1 ) which can be transfered with MeLi into (Me2NCH2CH2CH2)2TlMe ( 2 ) and with excess of Me2NCH2CH2CH2Li into (Me2NCH2CH2CH2)3Tl ( 3 ) respectively. Comproportionation of 1 with TlCl3 yields rather instable Me2NCH2CH2CH2TlCl2 ( 4 ) from which Me2NCH2CH2CH2TlMe2 ( 5 ) can be obtained by alkylation with MeLi. 1–3 and 5 were characterized by elemental analysis, mass spectra, 1H- and 13C-n.m.r. spectra.  相似文献   

15.
The dinuclear molecule of [(Me3SiCH2)Cl2Sn]2(CH2)3 adopts an extended conformation and features distorted tetrahedral tin centres, with the greatest distortion manifested in the C? Sn? C angles of approximately 128 °. The distortions are ascribed to the influence of intermolecular Sn···Cl interactions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
A series of organotin compounds bearing two intramolecular N → Sn coordination bonds RSn(OCH2CH2NMe2)2Cl (R = Me (4), n-Bu (5), Mes (6)) were synthesized in good yields. These compounds as well as 2 (R = Ph) react with PhSnCl3 to give redistribution products RPhSnCl2 and (Me2NCH2CH2O)2SnCl2 (3). The direction of redistribution reactions is reverse to Kocheshkov reaction. DFT calculations have shown that the driving force of the reactions is formation of intramolecular N → Sn coordination bonds in (RO)2SnCl2 (3), the Lewis acid stronger than RSn(OR)2Cl (2, 4-6). The mechanism of the redistribution reaction between 2 and PhSnCl3 consists of two steps: (1) initial exchange of OCH2CH2NMe2 and Cl to give PhSn(OCH2CH2NMe2)Cl2 (7) followed by (2). Ph and OCH2CH2NMe2 exchange.  相似文献   

17.
A straightforward method of synthesis of heteroleptic tin (II) alkoxides stabilized by one intramolecular coordination bond was developed. Addition of one equivalent of dimethylamino ethanol to diamide Sn(N(SiMe3)2)2 (5) yields alkoxy-amido derivative Sn(OCH2CH2NMe2)(N(SiMe3)2) (2). Further addition of alcohol leads to corresponding heteroleptic dialkoxides Sn(OCH2CH2NMe2)(OR) (R = Me (6), Et (7), iPr (8), tBu (9), Ph (10)). Catalytic activity of tin (II) compounds in polyurethane formation was tested.  相似文献   

18.
Four new tin(IV)/organotin(IV) complexes, [SnCl3(BPCT)] (2), [MeSnCl2(BPCT)] (3), [Me2SnCl(BPCT)] (4), and [Ph2SnCl(BPCT)] (5), have been synthesized by the direct reaction of 2-benzoylpyridine-N(4)-cyclohexylthiosemicarbazone [HBPCT, (1)] and stannic chloride/organotin(IV) chloride(s) in absolute methanol under purified nitrogen. HBPCT and its tin(IV)/organotin(IV) complexes (25) were characterized by CHN analyses, molar conductivity, UV-Vis, FT-IR, and 1H NMR spectral studies. In all the complexes, tin(IV) was coordinated via pyridine-N, azomethine-N, and thiolato-S from 1. The molecular structure of 2 has been determined by X-ray single-crystal diffraction analysis. Complex 2 is a monomer and the central tin(IV) is six-coordinate in a distorted octahedral geometry. The crystal system of 2 is monoclinic with space group P121/n1 and the unit cell dimensions are a?=?8.3564(3)?Å, b?=?23.1321(8)?Å, c?=?11.9984(4)?Å.  相似文献   

19.
The tin-containing sulfide Me3Sn(CH2)3-S-C6H5CH3-4 obtained by photoaddition of 4-toluene- thiol to allyltrimethyltin was oxidized with hydrogen peroxide to synthesize the tin-containing sulfone Me3Sn(CH2)3-SO2-C6H4CH3-4, the tin and sulfur atoms in which are separated by a trimethylene bribge. Treatment of the sulfone with butyllithium gave a first tin-containing lithium salt having a red-brown color. The exchange reaction of this salt with methyl iodide resulted in formation of two new isomeric tin-containing sulfones Me3SnCH2CH2CH(CH3)-SO2-C6H4CH3 and Me3Sn(CH2)3-SO2-C6H4CH2CH3 identified by 1HNMR spectroscopy. The latter result implies that the tin-containing sulfone is lithiated both by the methylene group adjacent to the sulfonyl group and by the toluene methyl group.  相似文献   

20.
Compound Et3SiOCH2NMe2 transfers Me2NCH2 to R2NH (R2=Et2, PhMe, [Cr(η6‐C6H5)(CO)3]Me, PhH) to form previously unknown diaminomethanes, Me2NCH2NR2 and, in the case of R2=PhH, the triamine Me2NCH2N(Ph)CH2NMe2. The diaminomethanes exhibit an unreported disproportionation to a mixture of (R2N)2CH2, (Me2N)2CH2, and Me2NCH2NR2, which can be trapped as their [Mo(CO)4(diamine)] complexes. Whereas PhMeNCH2NMe2 is a labile material, the metal‐substituted ([(η6‐C6H5)Cr(CO)3]MeNCH2NMe2 is a stable material. The triamine Me2NCH2N(Ph)CH2NMe2 is unstable with respect to transformation to 1,3,5‐triphenyltriazine, but is readily trapped as the bidentate‐triamineMo(CO)4. All metal complexes were characterized by single‐crystal X‐ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号