首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The salt [(CH3)4N]2[Sb6O4(NCS)12] is the first identified thiocyanato-oxy-antimonate(III) complex. Reported are details of the synthesis, relevant infrared data and its x-ray structure. The compound crystallizes in the triclinic space group P1 with Z = 2 (C10H12N7O2S6Sb3) and unit cell dimensions a = 11.314(6), b = 12.846(3), c = 8.679(2) Å; α = 91.93(3)°, β = 90.31(3)° and γ = 99.13(3)°. It contains centrosymmetric [Sb6O4(NCS)12]2? anions packed with isolated tetramethyl-ammonium cations. The fundamental structural element of the anion is provided by the fusion of three SbOSbO rings forming a zig-zag portion of a ribbon, only slightly pleated. Peculiar is the unequivalence of the six thiocyanate ligands, though all primarily N-bonded to antimony atoms. Three thiocyanates are terminal while other three are asymmetrically N-bridging between two centers; two of this latter type are also interconnecting the anions via Sb???S contacts. There are three different antimony environments, the primary bonding at Sb being to one nitrogen and three oxygens, to one oxygen and three nitrogens and to two atoms of each type.  相似文献   

2.
The two title trialkaline trioxoantimonates(III), tripotassium trioxoantimonate(III), K3[SbO3], (I), and tricaesium trioxo­antimonate(III), Cs3[SbO3], (II), crystallize in the cubic Na3[AsS3] structure type in space group P213. The structures show discrete Ψ-tetrahedral [SbO3]3− anions with C3v point-group symmetry. The Sb—O distances are 1.923 (4) Å in (I) and 1.928 (2) Å in (II), and the O—Sb—O bond angles are 99.5 (2)° in (I) and 100.4 (1)° in (II).  相似文献   

3.
Sulphito Cobalt(III) Ammines. II. [CoSO3NCS(NH3)4] and [CoSO3SCN(NH3)4] The brown complex [CoSO3NCS(NH3)4] · 2 H2O formed from aqueous solutions contains N-bonded thiocyanate as concluded from his IR spectrum. After dehydration the red complex [CoSO3SCN(NH3)4] containing S-bonded thiocyanate has been formed. The conversion of the two isomers is favoured by the trans effect of the sulphito group.  相似文献   

4.

The title complex [K{Cu(acen)}3]2[Co(NCS)4]·1/4CH3OH (acen = acetylacetonethylenediamine anion) has been prepared and characterized. Single-crystal x-ray analysis reveals that the complex crystallizes in space group P I with a = 11.442(2), b = 15.098(3), c = 28.500(4) Å, α = 82.77(1), β = 83.58(1), γ = 85.07(1)°. The crystal consists of the complex [K{Cu(acen)}3]+ cations, [Co(NCS)4]2? anions and methanol molecules. Three [Cu(acen)] molecules function as bridging ligands through phenolic O atoms to one K+ to give the tetranuclear [K{Cu(acen)}3]+ cation. Each copper(II) atom in the cation is in a square-planar geometry, being coordinated by two oxygen atoms and two nitrogen atoms from a quadridentate acen ligand. The cobalt(II) atom is coordinated by four nitrogen atoms of thiocyanate ligands, forming a deformed tetrahedral environment. The IR and UV-Vis spectra have also been investigated.  相似文献   

5.
[Sb(12-Crown-4)2(CH3CN)][SbCl6]3 and [Bi(12-Crown-4)2(CH3CN)][SbCl6]3, first Trications of Antimony(III) and Bismuth(III) The crown ether complexes [M(12-crown-4)2(CH3CN)][SbCl6]3 with M = Sb and Bi are formed by the reaction of antimony trichloride and bismuth trichloride, respectively, with antimony pentachloride in acetonitrile solution in the presence of 12-crown-4. They form colourless, moisture sensitive crystals, which were characterized by X-ray structure determinations and by IR spectroscopy. The complex with M = Sb was also characterized by 121Sb Mössbauer spectroscopy. Both complexes crystallize isotypically in the orthorhombic space group Pbcn with four formula units per unit cell. M = Sb: 3 483 observed unique reflections, R = 0.038. M = Bi: 2 958 observed unique reflections, R = 0.036. The compounds consist of SbCl6? ions and trications [M(12-crown-4)2(CH3CN)]3+, in which the M3+ ions are ninefold coordinated by the eight oxygen atoms of the crown ether molecules and by the nitrogen atom of the acetonitrile molecule. The lone pair of the M3+ ions has no steric effect.  相似文献   

6.
Thermal studies by TG, DTG and DTA of tris(piperidyldithiocarbamates) of arsenic(III), antimony(III) and bismuth(III) of the general type M[S2CN(CH2)5]3 (M=As, Sb and Bi) have been carried out in nitrogen and air, as well as under vacuum, to determine their modes of decomposition. The apparent activation energies were determined by graphical methods and the TIN temperatures were calculated from the TG profiles. A possible mechanism of the decomposition reaction is suggested on the basis of the results of their pyrolysis and their mass spectral data. The intermediates obtained at the end of various decomposition steps were identified via their elemental analysis, i.r. spectral data and X-ray diffraction studies. A dimeric structure of type M2[S2CN(CH2)5]4 (M=As, Sb) is proposed.  相似文献   

7.
Some hitherto unknown complexes of thiosermicarbazide (Htsc) and antimony(III) halides have been synthesized in 1,4-dioxane. The elemental analyses have indicated that these compounds are of the type Sb(CH5N3S)Cl3 and Sb(CH5N3S)X3.C4H8O2, where X = Br or I. The electronic and vibration spectral analyses have shown that Htsc acts as a bidentate ligand in these complexes, linking through sulphur and “the hydrazine terminal nitrogen” to Sb(III).  相似文献   

8.
The coordination compounds Na[LnL4] · 2H2O and [NBu4][LnL4] (Ln = Nd, Sm, Eu, Tb; HL is 3-methyl-4-formyl-1-phenyl-5-pyrazolone) have been synthesized and studied by IR spectroscopy and thermogravimetry. According to X-ray diffraction data, the coordination polyhedra of lanthanides are shaped as square antiprisms and formed by the oxygen atoms of four deprotonated moieties of the enol form of 4-formyl-5-pyrazolone. In the complex Na[EuL4] · 2H2O, sodium cations are bonded to the two nitrogen atoms of pyrazole heterocycles, combining discrete complex anions into two interpenetrating three-dimensional frameworks. Polycrystalline samples of neodymium(III), samarium(III), and terbium(III) complexes manifest intense luminescence in the spectral regions that are typical for them.  相似文献   

9.
The antimony(III) complexes [Sb(2Fo4Ph)Cl2] (1), [Sb(2Ac4Ph)Cl2] (2) and [Sb(2Bz4Ph)Cl2] (3) were prepared with N(4)-phenyl-2-formyl- (H2Fo4Ph), 2-acetyl- (H2Ac4Ph) and 2-benzoylpyridine (H2Bz4Ph) thiosemicarbazones. The antimony(III) complexes presented antitrypanosomal activity against the epimastigote and trypomastigote forms of Trypanosoma cruzi. Complexes (1) and (2) exhibited higher activity than the reference drugs benznidazole and nifurtimox.  相似文献   

10.
Oxidative Addition of N‐chlorotriphenylphosphoraneimine onto Phosphorus(III) Chloride and Antimony(III) Chloride. Crystal Structures of (Cl3PNPPh3)2[PCl6][ClHCl], [SbCl4(HNPPh3)2][SbCl6], and [Sb(NPPh3)4][SbCl6] Phosphorus(III) chloride reacts with N‐chlorotriphenylphosphoraneimine, ClNPPh3, in CH2Cl2 solution strongly exothermically via oxidative addition to give (Cl3PNPPh3)2[PCl6][ClHCl] ( 1 ). As a by‐product, Ph3PNP(O)Cl2 can be obtained, which is formed from PCl3 and ClNPPh3 in the presence of POCl3. In contrast to these results, antimony(III) chloride reacts with ClNPPh3 in CH2Cl2 solution to give a mixture of the phosphoraneimine complex [SbCl4(HNPPh3)2][SbCl6] ( 2 ) and the phosphoraneiminato complex [Sb(NPPh3)4][SbCl6] ( 3 ). The complexes 1 ‐ 3 were characterized by IR spectroscopy and by single crystal X‐ray determinations. 1 : Space group C2/c, Z = 4, lattice dimensions at 193 K: a = 3282.0(2), b = 798.7(1), c = 1926.1(2) pm, β = 107.96(1)°, R1 = 0.0302. 1 contains [Cl3PNPPh3]+ cations with PN bond lengths of 152.5(2) and 160.9(2) pm, and a PNP bond angle of 140.5(1)°. 2 ·CH2Cl2: Space group , Z = 2, lattice dimensions at 193 K: a = 1031.2(1), b = 1448.3(2), c = 1811,4(2) pm, α = 70.96(1)°, β = 87.67(1)°, γ = 75.37(1)°, R1 = 0.0713. 2 ·CH2Cl2 contains cations [SbCl4(HNPPh3)2]+ with octahedrally coordinated Sb atom and the HNPPh3 ligand molecules being in trans‐position. Sb–N bond lengths are 207.6(6) and 209.3(6) pm, PN bond lengths 162.3(7) and 160.8(7), which approximately corresponds with double bonds. 3 ·0.5CH2Cl2: Space group P4/n, Z = 2, lattice dimensions at 193 K: a = b = 1678.8(1), c = 1244.3(1) pm, R1 = 0.0618. 3 ·0.5CH2Cl2 contains [Sb(NPPh3)4]+ cations with tetrahedrally coordinated Sb atom and short Sb–N bond lengths of 193.7(6) pm. The PN distances of the phosphoraneiminato ligands, (NPPh3)? with 156.5(6) pm, correspond with double bonds, the SbNP bond angles are 130.6(3)°.  相似文献   

11.
Interaction of copper(II) chloride with 2, 4, 6‐triallyloxy‐1, 3, 5‐triazine leads to formation of copper(II) complex [CuCl2·2C3N3(OC3H5)3] ( I ). Electrochemical reduction of I produces the mixed‐valence CuI, II π, σ‐complex of [Cu7Cl8·2C3N3(OC3H5)3] ( II ). Final reduction produces [Cu8Cl8·2C3N3(OC3H5)3]·2C2H5OH copper(I) π‐complex ( III ). Low‐temperature X‐ray structure investigation of all three compounds has been performed: I : space group P1¯, a = 8.9565(6), b = 9.0114(6), c = 9.7291(7) Å, α = 64.873(7), β = 80.661(6), γ = 89.131(6)°, V = 700.2(2) Å3, Z = 1, R = 0.0302 for 2893 reflections. II : space group P1¯, a = 11.698(2), b = 11.162(1), c = 8.106(1) Å, α = 93.635(9), β = 84.24(1), γ = 89.395(8)°, V = 962.0(5) Å3, Z = 1, R = 0.0465 for 6111 reflections. III : space group P1¯, a = 8.7853(9), b = 10.3602(9), c = 12.851(1) Å, α = 99.351(8), β = 105.516(9), γ = 89.395(8), V = 1111.4(4) Å3, Z = 1, R = 0.0454 for 4470 reflections. Structure of I contains isolated [CuCl2·2C3N3(OC3H5)3] units. The isolated fragment of I fulfils in the structure of II bridging function connecting two hexagonal prismatic‐like cores Cu6Cl6, whereas isolated Cu6Cl6(CuCl)2 prismatic derivative appears in III . Coordination behaviour of the 2, 4, 6‐triallyloxy‐1, 3, 5‐triazine moiety is different in all the compounds. In I ligand moiety binds to the only copper(II) atom through the nitrogen atom of the triazine ring. In II ligand is coordinated to the CuII‐atom through the N atom and to two CuI ones through the two allylic groups. In III all allylic groups and nitrogen atom are coordinated by four metal centers. The presence of three allyl arms promotes an acting in II and III structures the bridging function of the ligand moiety. On the other hand, space separation of allyl groups enables a formation of large complicated inorganic clusters.  相似文献   

12.
Some mixed ligand complexes containing 2-methylbenzimidazole and thiocyanate ion were synthesized. Free ligands and their metal complexes were characterized using elemental analysis, determination of metal, magnetic susceptibility, molar conductivity, infrared, UV-VIS, and (1H, 13C) NMR spectra, and X-ray structure analysis. The results suggest that the Ag(I) complex has linear geometry, Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) have tetrahedral geometry, Pd(II) complex has square planar geometry, VO(IV) square pyramidal geometry, Pb(II) irregular tetrahedral geometry, and that the Cr(III) and Mn(II) complexes have octahedral geometry. The following general formulae were proposed for the prepared complexes: [AgBX], [CrB3X3], (HB)2[MnB2X4] · 2B and [MB2X2], where B = 2-methylbenzimidazole, HB = 2-methylbenzimidazolium, X = thiocyanate ion, and M = VO(IV), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), and Pb(II). Molar conductance of a 10−3 M solution in N,N-dimethyl formamide (DMF) indicates that all the complexes are non-electrolytes except the Mn(II) complex which is an electrolyte because the molar conductivity of its solution in DMF is high.  相似文献   

13.

Reaction of the ligand 2,2′-diphenyl-4,4′-bithiazole (DPBTZ) with Hg(SCN)2, Tl(NO3)3, CuCl, and PdCl2 gives complexes with stoichiometry [Hg(DPBTZ)(SCN)2], [Tl(DPBTZ)(NO3)3], [Cu(DPBTZ)(H2O)Cl], and [Pd(DPBTZ)Cl2]. The new complexes were characterized by elemental analyses and infrared spectroscopy. The crystal structure of [Hg(DPBTZ)(SCN)2] determined by X-ray crystallography. The Hg atom in the title monomeric complex, (2,2′-diphenyl-4,4′-bithiazole)mercury(II)bisthiocyanate, [Hg(C18H12N2S2)(SCN)2], is four-coordinate having an irregular tetrahedral geometry composed of two S atoms of thiocyanate ions [Hg-S 2.4025(15) and 2.4073(15) Å] and two N atoms of 2,2′-diphenyl-4,4′-bithiazole ligand [Hg-N 2.411(4) and 2.459(4) Å]. The bond angle S(3)-Hg(1)-S(4) of 147.46(5)° has the greatest derivation from ideal tetrahedral geometry. Intermolecular interaction between Hg(1) and two S atoms of two neighboring molecules, 3.9318(15) and 3.9640(18) Å, make the Hg(1) distort from a tetrahedron to a disordered octahedron. The attempts for preparation complexes of Tl(I), Pb(II), Bi(III), Cd(II) ions with 2,2′-diphenyl-4,4′-bithiazole ligand were not successful and also the attempts for preparation complexes of 4,4′,5,5′-tetraphenyl-2,2′-bithizole ligand with Cu(II), Ni(II), Co(II), Co(III), Mn(II), Mn(III), Fe(II), Fe(III), Cr(III), Zn(II), Tl(III), Pb(II), Hg(II), Cu(I), Pd(II) were not successful. This point can be regarded as the initial electron withdrawing of phenyl rings and also their spatial steric effects.  相似文献   

14.
Imidazole(Im), benzimidazole(BzIm), morpholine (Morph) and their derivatives react with Co(CNS)2 and dimethylglyoxime(DH2) in ethanolic medium in presence of air to form a number of new cobalt(III) complexes of the type trans-[Co(DH)2(L)(SCN)], which are characterised on the basis of electronic and IR spectra, NMR (1H and 13C) and mass spectra as well as thermogravimetric (TG-DTA) and conductance measurements. The thiocyanate groups are S-bonded. The NMR observations suggest that in solution these compounds exist as mixtures of the neutral species [Co(DH)2(L)(SCN)] and the salt [Co(DH)2(SCN)2]? [Co(DH)2(L)2]+. The mass spectra does not show the molecular ion peak of the complex. The TG-DTA measurements show that the thermolysis of these complexes proceeds through polymeric intermediates giving CO3O4 as the end product.  相似文献   

15.
The iron complexes [(Et2Sb)4Fe4(CO)14] ( 1 ), [(nPr2Sb)4Fe3(CO)10] ( 2 ), [{(Me3SiCH2)2Sb}4Fe2(CO)6] ( 3 ), and [2‐(Me2NCH2)C6H4SbFe2(CO)8] ( 4 ) were prepared by reactions of distibanes with Fe2(CO)9. Compounds 1 – 4 were characterized by X‐ray diffraction, 1H NMR and IR spectroscopy as well as mass spectrometry; complex 1 was additionally characterized by density functional calculations.  相似文献   

16.
Potassium diphthalocyaninato(2–)metallate(III), K[M(pc2–)2] (M = Bi, La, Ce, Pr, Sm, Sb, In) has been prepared by melting the metal chloride, iodide or acetate with 1,2‐dicyanobenzene in the presence of potassium methylate. Crystallisation with tetra(n‐butyl)ammonium bromide or hydroxide ((nBu4N)Br/OH), tetra(n‐pentyl)ammonium chloride ((nPe4N)Cl) or bis(triphenylphosphine)iminium halide ((PNP)X; X = Br, I) yields the corresponding red‐purple complex salt (nBu4N)[M(pc2–)2] (M = Bi ( 1 ), La ( 3 ), Ce ( 2 )), (nBu4N)[M(pc2–)2] · x CH3OH (M = Bi ( 5 ), Pr ( 6 ), Sm ( 7 ); 0 9 x 9 1), (nPe4N)[La(pc2–)2] ( 4 ), (nBu4N)[Pr(pc2–)2] · 2 py ( 10 ), (nBu4N)[Sb(pc2–)2] · 2 thf ( 11 ), (PNP)2[M(pc2–)2]Br · 2 Et2O (M = Sb ( 12 ), Bi ( 13 )), and (PNP)2[In(pc2–)2]I · 2 Et2O ( 14 ). Bronze coloured diphthalocyaninato(1–)metal(III) polyiodide, [M(pc)2]I2 (M = Sc, Y) has been prepared similarly in the presence of ammonium iodide. Reduction with (nBu4N)OH provides (nBu4N)[M(pc2–)2] · x CH3OH (M = Y ( 8 ), Sc ( 9 ); 0 9 x 9 1). Spectral properties (UV/VIS/NIR; IR; resonance Raman) of diphthalocyaninates in their different ring oxidation states (2–/2–; 2–/1–; 1–/1–) are discussed. 1 – 3 crystallise in the tetragonal (P4/ncc), 5 – 9 in the orthorhombic (Pna21), 10 , 11 in the triclinic (P‐1), and 4 , 12 – 14 in the monoclinic crystal system ( 4 : P21/m; 12 : C2/c; 13 , 14 : P2/c). Ecliptic rotamers with skew angles ranging from 4.1° to 6.0° are found in 1 – 3 , and staggered rotamers with skew angles ranging from 35.8° to 45.0° are found in 4 – 14 . The mean M–Ni bond lengths and interplanar distances increase monotonically with the ionic radius of the metal ion. Both distances deviate notably from this linear correlation in the SbIII and BiIII derivatives. The discrepancy is presumably due to the sterical dominance of the ns2 lone‐pair character. The actual size of eight co‐ordinated SbIII and BiIII is estimated to be R8 ≈ 1.02(Sb)/1.11(Bi) Å. In every complex salt, the pc ligand is severely distorted from planarity and can adopt domed, saddled, waved and mixed non‐planar conformations; the crystal symmetry is the most important factor for the conformational heterogeneity.  相似文献   

17.
Raman spectra have been obtained for Hg(CN)2, Hg(NO3)2, and Hg(CNS)2 in both liquid NH3 and ND3 at ambient temperature. The spectra indicate the presence of the species Hg[(CN)2(NH3)2] and [Hg(NH3)4]2+ in the mercury(II) cyanide and nitrate solutions respectively. The mercury(II) thiocyanate solutions, however, appear to contain solvated Hg(CNS)2 and[HG(NH3)4]2+ cations.  相似文献   

18.
Zusammenfassung Antimon(III)- und Antimon(V)-Verbindungen lassen sich nach Überführung in Na3[SbS4] durch Fällung mit [Cr en3]Cl3·3 1/2H2O als [Cr en3] [SbS4]·2 H2O quantitativ bestimmen. Es wird eine Arbeitsvorschrift angegeben, die es gestattet, in 5 bis 10 ccm Lösung 1 bis 2 mg Sb mit hinreichender Genauigkeit zu bestimmen.
Summary After being converted to Na3[SbS4], antimony(III) and antimony(V) compounds can be determined quantitatively by means of [Cr en3]Cl3·3 1/2 H2O which gives a precipitate of the formula [Cr en3][SbS4]·2 H2O. Directions are given for a technique which allows to determine in 5–10 cc. of solution, 1–2 mg. Sb with sufficient accuracy.

Résumé On peut doser quantitativement des combinaisons d'antimoine(III) et d'antimoine(V), après les avoir transformé par précipitation avec [Cr en3]Cl3· 3 1/2 H2O en [Cr en3][SbS4]·2 H2O. L'auteur indique une méthode d'analyse, permettant de doser avec une exactitude suffisante 1–2 mg de Sb dans 5–10 ccm de solution.
  相似文献   

19.
A capillary electrophoretic method was developed for the simultaneous determination of Sb(III) and Bi(III). A 1.0 mM W(VI)-0.10 mM P(V) complexing reagent readily reacted with a mixture of trace amounts of Sb(III) and Bi(III) to form the corresponding ternary Keggin-type complexes; [P(SbIIIW11)O40]6− and [P(BiIIIW11)O40]6− in 0.01 M malonate buffer (pH 2.4). Since the peaks due to the migrations of the ternary complex anions were well separated in the electropherogram, the pre-column complex-formation reaction was applied to the simultaneous CE determination of Sb(III) and Bi(III) with direct UV detection at 255 nm. The calibration curves were linear in the range of 2×10−7-5×10−5 M; a detection limit of 1×10−7 M was achieved for Sb(III) or Bi(III) (the signal-to-noise ratio=3).  相似文献   

20.
Thiocyanogen and selenocyanogen react with Ru(CO)3(PPh3)2 to give respectively the complexes Ru(CO)2(PPh3)2(NCS)2 and Ru(CO)2(PPh3)2(NCSe)2. (M—NCS and M—SCN represent N- and S-thiocyanato groups, M—NCSe and M—SeCN represent N- and Se-selenocyanato groups respectively, while M—CNS indicates the bridging coordination mode of thiocyanate.) Only the thiocyanogen reacts with Ru3(CO)12 giving [Ru(CO)2(CNS)2]n, which dissolves in hot coordinating solvents, such as pyridine, to form Ru(CO)2(py)2(NCS)2. Selenocyanogen is less effective than thiocyanogen in the oxidative addition reactions with rhodium(I) and iridium(I) complexes; in fact selenocyanogen does not react with Rh(CO)(PPh3)2Cl while with Ir(CO)(PPh3)2Cl the former gives Ir(CO)(PPh3)2(SeCN)2Cl by an equilibrium reaction. The coordination number of the metal and the charge on the complex do not change the bonding mode of the thiocyanate and selenocyanate groups in the iridium(III) complexes; in the Ir(PPh3)2ClX2 and [Ir(Ph2PC2H4PPh2)2X2]+ (X = SCN and SeCN) complexes the pseudohalogens are S- and Se-bonded.The complexes trans-M(PPh3)2(SeCN)2 (M = Pd, Pt) have been obtained by reacting M(PPh3)4 with selenocyanogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号