首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
[Sb(12-Crown-4)2(CH3CN)][SbCl6]3 and [Bi(12-Crown-4)2(CH3CN)][SbCl6]3, first Trications of Antimony(III) and Bismuth(III) The crown ether complexes [M(12-crown-4)2(CH3CN)][SbCl6]3 with M = Sb and Bi are formed by the reaction of antimony trichloride and bismuth trichloride, respectively, with antimony pentachloride in acetonitrile solution in the presence of 12-crown-4. They form colourless, moisture sensitive crystals, which were characterized by X-ray structure determinations and by IR spectroscopy. The complex with M = Sb was also characterized by 121Sb Mössbauer spectroscopy. Both complexes crystallize isotypically in the orthorhombic space group Pbcn with four formula units per unit cell. M = Sb: 3 483 observed unique reflections, R = 0.038. M = Bi: 2 958 observed unique reflections, R = 0.036. The compounds consist of SbCl6? ions and trications [M(12-crown-4)2(CH3CN)]3+, in which the M3+ ions are ninefold coordinated by the eight oxygen atoms of the crown ether molecules and by the nitrogen atom of the acetonitrile molecule. The lone pair of the M3+ ions has no steric effect.  相似文献   

2.
Bis(N,N‐dialkyldithiocarbamato)arsenic(III)/antimony(III) diphenyldithiophosphate/diphenyldi‐thiophosphinate complexes of the type [R2NCS2]2MS(S)PX2 [where M = As and Sb; NR2 = N(CH3)2, N(C2H5)2 and N(CH2)4; X = OC6H5 and C6H5] have been synthesized and characterized by physico‐chemical, spectral [UV, IR and NMR (1H, 13C and 31P)] and thermal (TG, DTA and DSC) analysis. The TG analysis shows single‐step decomposition of the complex to Sb2S3. These complexes have been screened for antibacterial and antifungal activity using the disc diffusion method. All the complexes have shown good activity as antibacterial and antifungal agents, which increased on increasing the concentration. Chloroamphenicol and terbinafin were used as standards for the comparison. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Tris-N(ethyl, m-tolyl) dithiocarbamato complexes of arsenic(III), antimony(III) and bismuth(III) abbreviated as As(S2CNRR′)3 Sb(S2CNRR′)3 and Bi(S2CNRR′)3, respectively, where R  C2H5 and R′  m-C6H4CH3, have been synthesized. These complexes have been characterized on the basis of elemental analyses, molecular weight determinations, conductance measurements and infrared spectral studies. Thermal studies of these complexes have been carried out in nitrogen and air to determine their modes of decomposition. Kinetic parameters, such as apparent activation energy and order of reaction, have been determined by the graphical method of Coats and Redfern [1].  相似文献   

4.
Chong Shik Shin 《Polyhedron》1985,4(9):1673-1675
The reaction of [IrL(CO)(PPh3)2]ClO4 (PPh3 = triphenylphosphine) with H2 produces new cationic dihydridoiridium(III) complexes of nitriles (L), [Ir(H)2L(CO)(PPh3)2]ClO4 [L = CH3CN (1), CH3CH2CN (2), CH3CH2CH2CN (3) and C6H5CN (4)], where nitriles are coordinated through the nitrogen atom. Proton NMR spectral data for complexes 1–4 suggest that the two hydrides in each complex are cis to each other and trans to CO and nitrogen (nitrile), and the two PPh3 are trans to each other.  相似文献   

5.
The tartrate monohydrates of Sm(III) and Tb(III), Sm2C12H12O18·H2O and Tb2C12H12O18·H2O, were prepared and characterized on the basis of their elemental analysis and IR spectral studies. The thermal decompositions of these compounds, studied by TG and DSC methods, were found to follow an almost uniform pattern. Decomposition occurs in four steps. The first step involves dehydration, accompanied by partial decomposition to the oxalate, followed by conversion to the carbonate. The ultimate product in each case is the oxide M2O3, whereM=Sm or Tb. Reflectance spectra of the terbium compound were recorded at various stages of decomposition. The kinetics of the first decomposition step was studied by the non-isothermal method. TG and DSC data for this step were analysed for the evaluation of various kinetic parameters. Reasonable values ofE, Z, andΔS + were obtained.α vs. T curves were drawn on the basis of the TG and DSC data. The results suggest that the mechanism involves random nucleation.  相似文献   

6.
Syntheses and Crystal Structures of the Thiochloroantimonates(III) PPh4[Sb2SCl5] and (PPh4)2[Sb2SCl6]. CH3CN (PPh4)2Sb3Cl11, obtained from Sb2S3, PPh4Cl and HCl, reacts with Na2S4 in acetonitrile forming PPh4[Sb2SCl5]. From this and Na2S4 or from (PPh4)2[Sb2Cl8] and Na2S4 or K2S5 in acetonitrile (PPh4)2[Sb2SCl6] · CH3CN is obtained. Data obtained from the X-ray crystal structure determinations are: PPh4[Sb2SCl5], monoclinic, space group P21/c, a = 1002.9(3), b = 1705.6(5), c = 1653.7(5) pm, β = 99.12(2)°, Z = 4, R = 0.068 for 1283 reflextions; (PPh4)2[Sb2SCl6] · CH3CN, triclinic, space group P1 , a = 1287.8(7), b = 1343.6(9), c = 1696.5(9) pm, α = 69.82(5), β = 85.08(4), γ = 71.54(6)°, Z = 2, R = 0.059 for 6409 reflexions. In every anion two Sb atoms are linked via one sulfur and one ore two chloro atoms, respectively. Paris of [SbSCl5]? ions are associated via Sb …? S and Sb …? Cl contacts forming dimer units. In both compounds every Sb atom has a distorted octahedral coordination when the lone electron pair is included in the counting.  相似文献   

7.
Methylene-bridged Antimony(III)-dithiocarbamates, -xanthogenates, and -dithiophosphates: [SbL2]2CH2(L = S2CNR2, S2COR, S2P(OR)2) 1 :4-reaction of [Cl2Sb]2CH2 with sodium dithiocarbamates, -xanthogenates or -dithiophoshates lead to the replacement of the chlorine atoms by the respective 1,1-dithio ligands. The products of the type [SbL2]2CH2 (L = S2CNR2, S2COR, S2P(OR)2) are studied by IR, 1H-NMR- and 13C-NMR-spectroscopy. Both spectral data and thermal stability of the compounds are compared with those of the corresponding monomethylstibanes MeSbL2.  相似文献   

8.
Thermal studies have been carried out on nitritobismuthates(III) of the silver group having the general formula M2Ag[Bi(NO2)6] where M = Cs, Rb, K, and the sodium group having the formula M2Na[Bi(NO2)6] where M = Cs, Rb.Typical thermal curves, temperatures of the endothermic peaks and percentage weight loss, calculated from the TG curve, are shown. On the basis of the results of thermal and X-ray analysis the mechanisms of the thermal decomposition reaction were determined for nitritobismuthates(III).The thermal curves were used to calculate kinetic parameters, activation energy Ea and order of reaction n by Zsako's and Coats and Redfern's methods. A comparison of the thermal stabilities of the salts under study was made. Within the same group of nitritobismuthates(III), the activation energy and the decomposition temperatures of the salts increases when the difference between the radii of outer sphere cations increases.  相似文献   

9.
The thermal decomposition of thiosulphatobismuthates(III) of alkali metals was investigated. The general formulae of the thiosulphatobismuthates are M3[Bi(S2O3)3]·H2O where M = Na, K, Rb or Cs, and M2Na[Bi(S2O3)3]·H2O where M = K or Cs.Typical thermal curves for thiosulphatobismuthates(III) and the results obtained in thermal, X-ray, chemical and spectrophotometrical analyses of the decomposition products are shown. The results were used to determine three stages of the thermal decomposition. At the first stage, at about 200°C, hydrated compounds are dehydrated. At the second stage, above 200°C, there is a rapid decrease in mass which is caused by evolving sulphur dioxide; bismuth sulphide and an intermediate decomposition product are formed. At about 320°C the thermal decomposition products are bismuth sulphide and alkali metal sulphate.  相似文献   

10.
The first isolation of an antimony(III) thiocyanate complex salt, [(CH3)4N][Sb(CNS)4] ( I ), and of two adducts of the Sb(CNS)3 formal unit with potentially tridentate nitrogen donors, Sb(CNS)3tpta ( II ) and [Sb(CNS)3]3(dqp)2 ( III ), is described. In these derivatives, infrared and Mössbauer spectral data are essentially indicating the predominant presence of N-bonded thiocyanate. For complex I , the occurrence also of groups bridging through the nitrogen atom is advanced.  相似文献   

11.
Lanthanum(III) tris-tartrato lanthanate(III) decahydrate, La[La(C4H4O6)3]·10H2O has been synthesized and characterized by elemental analysis, IR, electronic spectral and X-ray powder diffraction studies. Thermal studies (TG, DTG and DTA) in air showed a complex decomposition pattern with the generation of an anhydrous species at ~170°C. The end product was found to be mainly a mixture of La2O3 and carbides at ~970°C through the formation of several intermediates at different temperature. The residual product in DSC study in nitrogen at 670°C is assumed to be a similar mixture generated at 500°C in TG in air. Kinetic parameters, such as, E*, ΔH, ΔS, etc. obtained from DSC are discussed. IR and X-ray powder diffraction studies identified some of the decomposition products. The tentative mechanism for the thermal decomposition in air of the compound is proposed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The structure of Sb(S2CN(CH2)6)2Cl, is dimeric owing to Sb? Cl bridges and features a distorted six‐coordinate geometry for antimony; there are two solvent chloroform molecules per dimer. The geometry is based on a capped octahedron as a result of the presence of a stereochemically active lone pair of electrons. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Bis(N, N′‐dialkyldithiocarbamato)antimony(III) alkylenedithiophosphates of the type [R2NCS2]2 SbS(S)POGO [where NR2 = N(CH3)2, N(C2H5)2 and N(CH2)4; G = ? CH2? C(C2H5)2? CH2? , ? CH2? C(CH3)2? CH2? , ? CH(CH3)? CH(CH3)? and ? C(CH3)2? C(CH3)2? ] were synthesized and characterized by physico‐chemical, spectral [UV, IR and NMR (1H, 13C and 31P)] and thermal (TG, DTA and DSC) analysis. The TG decomposition analysis step of the complex indicated the formation of Sb2S3 as the final product. The first endothermic peak in DSC indicated the melting point of the complexes. These complexes were screened for their antimicrobial activities using the disk diffusion method. All the complexes showed good activity as antibacterial and antifungal agents on some selected bacterial and fungal strains, which increased on increasing the concentration. Chloroamphenicol and terbinafin were used as standards for comparison. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
The X‐ray crystal structure of Sb(S2CN(CH2)4)2Cl features a five‐coordinate geometry for antimony within a ClS4 donor set, provides evidence for a stereochemical influence exerted by the lone pair of electrons on antimony, and shows no evidence for molecular aggregation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The structures of [Cu (S2CN (CH2)4)2] (1) and [Zn2(S2CN‐(CH2)4)4] (2) have been determined by X‐ray crystallography analysis. They are all isomorphous and triclinic, space group of P1?, with Z = 1. The lattice parameters of compound 1 is: a = 0.63483(2) nm, b = 0.74972(3) nm, c=0.78390(1) mn, α = 75.912(2)°, β = 78.634(2)° and γ = 86.845(2)°; compound 2: a = 0.78707(6) nm, b=0.79823(6) nm, c = 1.23246(9) nm, α = 74.813(2)°, β = 73.048(2)° and γ = 88.036(2)°. The copper atom is located on a crystallographic inversion center and zinc atom lies across centers of symmetry. The Cu(II) ion has a square‐planar geometry while Zn(II) has a distorted tetrahedral geometry. The thermal gravity (TG) data indicate that no structural transitions in the two compounds were abserved and the decomposition products can adsorb gas. Also they all have a high thermal stability.  相似文献   

16.
The acetate bearing dithioether, sodium di(2-carboxymethylsufanyl)maleonitrile, L1 upon reaction with [RuII(bpy)2Cl2]·2H2O, [RuII(phen)2Cl2]·2H2O, [RuIII(bpy)2Cl2]+ or [RuIII(phen)2Cl2]+ in methanol formed complexes of the type [(bpy)2Ru{S2(CH2COO)2C2(CN)2}], (1), [(phen)2Ru{S2(CH2COO)2C2(CN)2}], (2), [(bpy)2Ru{(OOCCH2)2S2C2(CN)2}]+, (5) and [(phen)2Ru{(OOCCH2)2S2C2(CN)2}]+, (6) respectively. Four other Ru(III) complexes with di(benzylsulfanyl)maleonitrile, L2, [(bpy)2Ru{S2(PhCH2)C2(CN)2}]3+, (7) and [(phen)2Ru{S2(PhCH2)2C2(CN)2}]3+, (8), and with acetate, [(bpy)2Ru(OOCCH3)2]+, (9) and [(phen)2Ru(OOCCH3)2]+, (10) were also synthesized. In the cyclic voltammetry, complexes (1) and (2) exhibited quasireversible oxidation waves at 1.01 and 1.02 V vs. Ag/AgCl over GC electrode in DMF, while the corresponding Ru(III) L1 complexes (5) and (6) exhibit reversible oxidation at E1/2 0.59 and 0.58 V, respectively, under identical conditions. This is unlike the voltammetric behavior of the Ru(II) and Ru(III) L2 complexes, wherein the complex pairs (3), (7) and (4), (8) exhibited identical voltammograms with single reversible one electron waves at E1/2 0.98 and 0.92 V, respectively under identical conditions. The voltammograms of Ru(II)-L2 complexes (3) and (4) also became irreversible in presence of nearly four molar equivalent of sodium acetate. Hence, the irreversible redox behavior of complexes (1) and (2) has been interpreted in terms of rapid linkage isomerization, i.e. shift in κ2-S,S′ to κ2-O,O′ coordination, following the Ru(II)/Ru(III) electrode process. The electronic spectra of Ru(III)-L1 complexes (5) and (6) resemble closely with that of (9) and (10) instead of Ru(III)-L2 complexes (7) and (8), further supports proposed linkage isomerization. The cationic complexes were obtained as [PF6] salts and all compounds were characterized using analytical and spectral (IR, 1H NMR, UV-vis and mass) data.  相似文献   

17.
Two new tetrachloroferrates(III) have been synthesized of molecular formulas [(CH3)2NH2][FeCl4] and [(CH3)2NH2]2FeCl5. The differences in their physicochemical properties have been highlighted using thermal analysis (TG‐MS) and differential scanning calorimetry (DSC). The crystal and molecular structure of [(CH3)2NH]2FeCl5 was determined. The iron(III) cation is four coordinated by chloride ions, and it adopts a slightly distorted tetrahedral coordination with three angles smaller and three larger than the tetrahedral one. In the structure four intermolecular N‐H···Cl hydrogen bonds link the [(CH3)2NH2]+ cations to dimers via a Cl? bridge.  相似文献   

18.
Five new thioantimonates have been synthesized in the presence of organic amines under solvothermal conditions and their structures determined by single-crystal X-ray diffraction. All of the compounds are layered and contain antimony-sulphide anions of stoichiometry [Sb4S7]2−, but the structure of the anion formed is dependent on the amine used in synthesis. (H3N(CH2)4NH3)[Sb4S7] (1) contains [Sb4S7]2− double chains directed along [010]. Weak interchain Sb-S interactions between neighbouring chains cause the double chains to pack into layers in the ab plane. In the [001] direction, the layers of double chains alternate with doubly protonated diaminobutane molecules to which the chains are hydrogen bonded. Compounds of general formula (TH)2[Sb4S7] (T=CH3(CH2)2NH2(2), (CH3)2CHNH2(3), CH3(CH2)3NH2(4) and CH3(CH2)4NH2(5)) adopt a more complex structure in which [Sb3S8]7− units are linked by SbS33− pyramids to form chains, which in turn are bridged by sulphur atoms to create sheets containing large heterorings. Pairs of such sheets form double layers of four atoms thickness that are stacked along [001]. Protonated amine molecules are located between anionic antimony-sulphide layers to which they are hydrogen bonded. Thermal analysis reveals that the decomposition temperature of materials containing [Sb4S7]2− anions is dependent both on the structure of the anion, the lowest decomposition temperature being that of the low-dimensional phase (1) and on the identity of the amine, the decomposition temperature decreasing with an increasing number of carbon atoms and decreasing density.  相似文献   

19.
Cationic methyl complex of rhodium(III), trans-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] (1) is prepared by interaction of trans-[Rh(Acac)(PPh3)2(CH3)I] with AgBPh4 in acetonitrile. Cationic methyl complexes of rhodium(III), cis-[Rh(Acac)(PPh3)2 (CH3)(CH3CN)][BPh4] (2) and cis-[Rh(BA)(PPh3)2(CH3)(CH3CN)][BPh4] (3) (Acac, BA are acetylacetonate and benzoylacetonate, respectively), are obtained by CH3I oxidative addition to rhodium(I) complexes [Rh(Acac)(PPh3)2] and [Rh(BA)(PPh3)2] in acetonitrile in the presence of NaBPh4. Complexes 2 and 3 react readily with NH3 at room temperature to form cis-[Rh(Acac)(PPh3)2(CH3)(NH3)][BPh4] (4) and cis-[Rh(BA)(PPh3)2(CH3)(NH3)][BPh4] (5), respectively. Complexes 1-5 were characterized by elemental analysis, 1H and 31P{1H} NMR spectra. Complexes 1, 2, 3 and 4 were characterized by X-ray diffraction analysis. Complexes 2 and 3 in solutions (CH2Cl2, CHCl3) are presented as mixtures of cis-(PPh3)2 isomers involved into a fluxional process. Complex 2 on heating in acetonitrile is converted into trans-isomer 1. In parallel with that isomerization, reductive elimination of methyl group with formation of [CH3PPh3][BPh4] takes place. Replacement of CH3CN in complexes 1 and 2 by anion I yields in both cases the neutral complex trans-[Rh(Acac)(PPh3)2(CH3)I]. Strong trans influence of CH3 ligand manifests itself in the elongation (in solid) and labilization (in solution) of rhodium-acetonitrile nitrogen bond.  相似文献   

20.

The green colored trithiocarbamato complexes of dirhenium(III,III) of type [Re2(μ-η2-SLR)22-LR)3][ReO4] (4(LR)), where LR represents the dithiocarbamato ligands [LR?=?S2CNEt2, 4(LEt) and S2CN(CH2)4, 4(LPyr)], have been synthesized in moderate yield by reacting Re2(μ-O2CCH3)4Cl2 (1) and sodium salt of diethyldithiocarbamate or pyrrolidinedithiocarbamate in boiling ethanol under nitrogen atmosphere. The spectral (IR, UV–vis, NMR) and electrochemical properties of the complexes are reported. The identity of complex 4(LEt) has been established by single-crystal X-ray structure determination. The density functional theory (DFT) calculations rationalized the electronic structure of complexes 4(LR) in comparison with dithiocarbamato complexes of dirhenium(II,II) and dirhenium(III,II). The absorption spectra of the 4(LR) complexes are scrutinized by the time-dependent DFT analysis.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号