首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 426 毫秒
1.
分子烙印技术简介   总被引:2,自引:0,他引:2  
分子烙印技术的基本思想是源于人们对抗体—抗原或酶的专一性的认识 ,即一种抗体只能针对一种抗原 ,一种酶只能选择性的催化一种或固定的几种底物 ,而分子烙印技术则通过人工的方法合成与目标分子耦合的大分子化合物 :以目标分子为模板 ,将具有结构互补的功能化聚合物单体分子通过共价键或非共价键的方式与模板分子结合 ,加入单体进行聚合反应 ,反应完成后将模板分子提取出来后形成具有空穴的能识别模板分子的高分子。用这种基于仿生方法合成的大分子聚合物即为分子烙印聚合物 ,它与模板分子的位置 ,形状 ,官能团互补[4 ] ,对模板分子具有高…  相似文献   

2.
分子器件具有尺寸小、设计合成可控、存储量大、反应速度快、人工智能等诸多优点,是当今化学、物理和材料等领域研究最为重要的一个交叉领域.综述了近些年来分子逻辑器件领域的研究进展.介绍了各种类型的分子逻辑门、半(加)减法器、分子逻辑线路以及DNA分子和固态分子计算.最后提出了分子器件存在的问题并展望了其应用前景.  相似文献   

3.
基于C=O…HN的分子间氢键能够自组装形成具有精确分子排列和很好稳定性的有序结构,在设计构造液晶功能材料方面具有重要的不可替代的地位.分子形状是设计小分子热致液晶的一个主要考虑因素,它对液晶态的结构有至关重要的影响.以分子形状与液晶态相互关系为主线,重点介绍了目前文献报道的基于C=O…HN分子间氢键的盘状和楔形分子形成液晶的研究进展,以期为新型液晶材料的分子设计提供一些借鉴.  相似文献   

4.
分子印迹技术研究进展   总被引:8,自引:0,他引:8  
分子印迹是制备具有分子特异识别功能聚合物的一种技术。本文从分子印迹聚合物的识别机理、分子印迹聚合制备条件和制备技术三个方面综述了分子印迹的研究进展,最后展望了分子印迹发展前景。引用文献66篇。  相似文献   

5.
张华承  辛飞飞  李月明  郝爱友  安伟  孙涛 《化学进展》2010,22(12):2276-2281
本文综述了“超分子环糊精两亲分子”的最新研究进展。超分子环糊精两亲分子主要包括疏水性修饰的环糊精衍生物(第一类)、环糊精衍生物与两亲分子的包合物(第二类)和环糊精衍生物与疏水性客体分子的包合物(第三类)。针对超分子环糊精两亲分子及其自组装体系的研究不但丰富了由诺贝尔化学奖得主Lehn等所提出的超分子化学的内涵,实现了多学科的交叉,而且在生物模拟、智能材料以及可控的、具有疗效的药物输运与缓释等领域具有潜在的应用前景。  相似文献   

6.
郭秀春  周文辉 《化学研究》2012,23(5):103-110
分子印迹技术是制备对特定目标分子具有特异性识别能力的高分子材料的技术,所制备的高分子材料被称为分子印迹聚合物.分子印迹聚合物因具有预定性、识别性和实用性三大优点已广泛应用于分离、模拟抗体与受体、催化剂以及仿生传感器等方面和领域,显示出了广泛的应用前景.作者对分子印迹技术的发展历史、基本原理、分类、应用现状以及一些新的研究热点进行了综述.  相似文献   

7.
蛋白质分子印迹   总被引:2,自引:0,他引:2  
分子印迹技术是一种新型的高效分离技术,具有空间选择性识别特性。本文介绍了分子印迹技术在蛋白质大分子上的应用和发展,包括蛋白质分子印迹选用的单体和交联剂、印迹方法、印迹机理、蛋白质分子印迹技术的应用以及存在的一些问题。  相似文献   

8.
纳米尺度下的分子传递是以纳米先进材料为导向的材料化学工程学科所面临的关键科学问题之一.借鉴分子热力学的建模研究思路研究分子传递,从分子之间相互作用出发,结合分子模拟技术,有望最终建立理论模型,实现分子传递的定量预测.本文通过几个研究实例初步探索了如何从分子间相互作用出发开展纳米尺度下分子传递的研究,利用分子模拟手段解析纳米尺度下特殊的微结构,并以此为基础进而实现对分子传递行为的调控和预测,指导具有丰富纳米结构的膜材料以及催化材料的设计和应用.  相似文献   

9.
艾勇  张浩力* 《物理化学学报》2012,28(10):2237-2248
分子电子学已成为21世纪研究的热点. 通过将具有特定功能的分子连接在纳米尺度金属电极之间从而构筑包括分子导线、开关、整流器在内的各种分子尺度电子器件, 这引起了科学家们广泛的研究兴趣. 在分子电子学研究中, 构筑金属/分子/金属(MMM)分子结是研究分子器件中电子传输性质的关键. 尽管已经取得了很大的进展, 目前在纳米尺度下构筑稳定可靠的MMM分子结并测试单个分子的电学性质仍然面临很多挑战. 本文着重对单分子电学性质的测试技术和相关理论研究的最新进展以及存在的挑战做了概述.  相似文献   

10.
左旋氧氟沙星分子模板聚合物的分子识别   总被引:1,自引:0,他引:1  
左旋氧氟沙星(Levofloxacin,LVLX)为新一代喹诺酮类合成抗菌药物,是氧氟沙星的光学活性S-(-)异构体,控制并检测人体中的左旋氧氟沙星浓度在临床检测和药代动力学方面具有重要意义。本实验以左旋氧氟沙星为模板分子,乙腈为溶剂,α-甲基丙烯酸(MAA)和4-乙烯基吡啶(4-VP)为功能基单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,采用分子模板技术合成了对左旋氧氟沙星具有特效选择性吸附的一种新型分子模板聚合物,并系统地研究了其吸附性质和分子识别功能。结果表明,模板聚合物比非模板聚合物对药物左旋氧氟沙星表现出较高的吸附能力和选择性。  相似文献   

11.
A method of expansion of molecular orbital wave functions into valence bond (VB ) functions is extended to molecular fragments. The wave function is projected onto a basis of mixed determinants, involving molecular orbitals as well as fragment atomic orbitals, and is further expressed as a linear combination of VB functions, characteristic of structural formulas of the fragment but whose remaining bonds are frozen. Structural weights for the fragment are deduced from this expression. Delocalized molecular orbitals are used as a startpoint, as they are after an ordinary SCF calculation. Wave functions of medium-sized molecules may be analyzed with reasonable storage requirements in a computer.  相似文献   

12.
It is well known that in any ab initio molecular orbital (MO) calculation, the major task involves the computation of molecular integrals, among which the computation of Coulomb integrals are the most frequently encountered. As the molecular system gets larger, computation of these integrals becomes one of the most laborious and time consuming steps in molecular systems calculation. Improvement of the computational methods of molecular integrals would be indispensable to a further development in computational studies of large molecular systems. The atomic orbital basis functions chosen in the present work are Slater type functions. These functions can be expressed as finite linear combinations of B functions which are suitable to apply the Fourier transform method. The difficulties of the numerical evaluation of the analytic expressions of the integrals of interest arise mainly from the presence of highly oscillatory semi-infinite integrals. In this work, we present a generalized algorithm based on the nonlinear transformation of Sidi, for a precise and fast numerical evaluation of molecular integrals over Slater type functions and over B functions. Numerical results obtained for the three-center two-electron Coulomb and hybrid integrals over B functions and over Slater type functions. Comparisons with numerical results obtained using alternatives approaches and an existing code are listed.  相似文献   

13.
The simulation of an Aerosol OT micelle in the apolar environment is performed via the molecular dynamics method in the approximation of a coarse-grain model. The mean size and shape of a micelle, as well as its molecular structure, are determined as functions of the water-surfactant ratio and aggregation number. Geometric parameters of aggregates are estimated through calculation of the inertia tensors of its internal portion under the assumption of an ellipsoidal shape of a micelle. Radial profiles of the partial density and pair correlation functions are obtained, which are used to calculate coordination numbers for water molecules, counterions, and surface-active ions. The most probable arrangement of water molecules and surfactant anions are found on the basis of orientation distribution functions.  相似文献   

14.
15.
Fitted electron density functions constitute an important step in quantum similarity studies. This fact not only is presented in the published papers concerning quantum similarity measures (QSM), but also can be associated with the success of the developed fitting algorithms. As has been demonstrated in previous work, electronic density can be accurately fitted using the atomic shell approximation (ASA). This methodology expresses electron density functions as a linear combination of spherical functions, with the constraint that expansion coefficients must be positive definite, to preserve the statistical meaning of the density function as a probability distribution. Recently, an algorithm based on the elementary Jacobi rotations (EJR) technique was proven as an efficient electron density fitting procedure. In the preceding studies, the EJR algorithm was employed to fit atomic density functions, and subsequently molecular electron density was built in a promolecular way as a simple sum of atomic densities. Following previously established computational developments, in this paper the fitting methodology is applied to molecular systems. Although the promolecular approach is sufficiently accurate for quantum QSPR studies, some molecular properties, such as electrostatic potentials, cannot be described using such a level of approximation. The purpose of the present contribution is to demonstrate that using the promolecular ASA density function as the starting point, it is possible to fit ASA-type functions easily to the ab initio molecular electron density. A comparative study of promolecular and molecular ASA density functions for a large set of molecules using a fitted 6-311G atomic basis set is presented, and some application examples are also discussed.  相似文献   

16.
Molecular reactors are miniature vessels for the assembly of reactants at the molecular level, in order to change the nature of chemical transformations. It seems probable that those that will find most immediate applications are those that change product ratios or give products which would not readily form in the absence of the reactors, and thereby afford easy access to materials that are otherwise difficult to obtain. Molecular machines consist of interrelated parts with separate functions and perform some kind of work, at the molecular level. Practical examples are likely to be relatively uncomplicated and not based on individual functions of single-molecule devices. Instead they will probably rely on extensive redundancy of the molecular components and their interactions and reactions, as well as of the machines themselves.  相似文献   

17.
ObjectiveTo explore the disturbed molecular functions and pathways in clear cell renal cell carcinoma (ccRCC) using Gibbs sampling.MethodsGene expression data of ccRCC samples and adjacent non-tumor renal tissues were recruited from public available database. Then, molecular functions of expression changed genes in ccRCC were classed to Gene Ontology (GO) project, and these molecular functions were converted into Markov chains. Markov chain Monte Carlo (MCMC) algorithm was implemented to perform posterior inference and identify probability distributions of molecular functions in Gibbs sampling. Differentially expressed molecular functions were selected under posterior value more than 0.95, and genes with the appeared times in differentially expressed molecular functions ≥5 were defined as pivotal genes. Functional analysis was employed to explore the pathways of pivotal genes and their strongly co-regulated genes.ResultsIn this work, we obtained 396 molecular functions, and 13 of them were differentially expressed. Oxidoreductase activity showed the highest posterior value. Gene composition analysis identified 79 pivotal genes, and survival analysis indicated that these pivotal genes could be used as a strong independent predictor of poor prognosis in patients with ccRCC. Pathway analysis identified one pivotal pathway − oxidative phosphorylation.ConclusionsWe identified the differentially expressed molecular functions and pivotal pathway in ccRCC using Gibbs sampling. The results could be considered as potential signatures for early detection and therapy of ccRCC.  相似文献   

18.
Analytic chirality functions in one or more ligand parameters representing pseudoscalar molecular properties are shown to decompose as linear combinations in the elementary chirality functions of a suitable module basis. The implications of this decomposition for an approximation ansatz are considered.  相似文献   

19.
The Car-Parrinello nonempirical molecular dynamics method was used to obtain radial distribution functions of water at the critical point and in six sub- and supercritical states. The influence of changes in state parameters on radial distribution functions was found to be much stronger close to the saturation curve than in the region of high pressures. The reproduction of radial distribution functions by classical and quantum molecular dynamics methods was analyzed. The positions of radial distribution peaks and the ratios between their heights were found to be almost identical and to correspond to the experimental data, but, as concerns quantitative estimates of peak heights, the same contradictions are observed as between the data of various experimental studies.  相似文献   

20.
In previous papers a statistical theory was presented concerning network formation by polyfunctional crosslinking of existing polydisperse (non-uniform) primary polymers. Relationships were derived between network parameters and the equilibrium shear modulus during crosslinking processes of polymers of various molecular weight distributions. In the present paper the various relationships obtained are compared. Moreover, results of calculations for a hypothetical crosslinking process are presented, such as the weight fractions of sol, ideal network and free or dangling ends and the molecular weights between crosslinks as functions of the equilibrium shear modulus for various molecular weight distributions. Furthermore, the results of fractionation of the primary polymer, as a consequence of the crosslinking process, are shown and also the crosslinking indexes as functions of the sol fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号