首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
微乳液相色谱法同时测定山楂叶提取物中4种黄酮成分   总被引:1,自引:0,他引:1  
建立了一种新的微乳体系,用于微乳液相色谱同时分析山楂叶提取物中牡荆素鼠李糖苷、芦丁、牡荆素及金丝桃苷4种黄酮成分.通过对影响分离选择性的主要因素进行考察,得到最佳微乳体系的组成为: 1.0%(w/w) 聚氧乙烯月桂醇(Brij35)-1.1%(w/w)正丁醇-0.1%(w/w)正辛醇-0.3%三乙胺(V/V)(H_3PO_4调节至pH 2.5).在此微乳体系中,表面活性剂类型和浓度、油相种类、添加剂三乙胺、流动相的pH值对4种黄酮成分的分离起到了重要的作用.选择Venusil ASB C_(18)色谱柱(150 mm×4.6 mm, 5μm),流速为0.8 mL/min,检测波长为360 nm,柱温为35 ℃.结果显示,4种黄酮成分在27 min内达到基线分离,在0.95~140.8 mg/L范围内,4个黄酮成分的线性相关系数r≥0.9995,平均回收率98.6%~101.6%.本方法可应用于山楂叶提取物中4种主要黄酮成分的质量分析.  相似文献   

2.
A simple and sensitive HPLC method was developed to simultaneously determine three active compounds, vitexin-4″-O-glucoside (VG), vitexin-2″-O-rhamnoside (VR) and hyperoside (HP), in rat plasma after administering the hawthorn leaves extract (HLE). An HPLC assay with baicalin as the internal standard was carried out using a Phenomsil C?? analytical column with UV detection at 332?nm. The mobile phase consisted of methanol-acetonitrile-tetrahydrofuran-1% glacial acetic acid (6?:?1.5?:?18.5?:?74, v/v/v/v). The calibration curves were linear over the range of 2.5-500, 0.2-25 and 0.25-12.5?μg?mL?1 for VG, VR and HP, respectively. The method was reproducible and reliable, with relative standard deviations of the intra- and inter-day precision between 1.2% and 13.2% for the analysis of the three analytes. The validated HPLC method herein described was successfully applied to the pharmacokinetic study of VG, VR and HP after oral administration of HLE to rats over the dose range of 2.5-10 mL?kg?1.  相似文献   

3.
The combination of capillary isotachophoresis (ITP) and capillary zone electrophoresis (CZE) in the column coupling configuration was optimized in a mode where the electrolyte for the CZE step is different from the leading and terminating ITP electrolytes. Two colored markers, picric acid and 1-nitroso-2-naphthol, were used for exact timing of the transfer of isotachophoretically stacked analyte zones into the CZE column and for the control of the residual amount of the leading and terminating ITP electrolytes entering the CZE capillary together with the analytes, thus controlling the duration of transient ITP migration in the CZE capillary and ensuring good separation of the analytes and reproducibility of the migration times (relative standard deviations 1%). ITP-CZE was applied to the simultaneous assay of several cinnamic acid derivatives and flavonoids in methanolic extracts of Sambucus flowers and Crataegus leaves and flowers. The preconcentrating and cleansing effect of the ITP step allowed injection of relatively large sample volumes (30 microL). The limits of detection were approximately 20-50 ng x mL(-1) and 100 ng x mL(-1) for the acids and flavonoids, respectively ( thick similar 200-times lower compared to conventional CE) with spectrophotometric detection at 254 nm. The ITP-CZE exhibited satisfactory linearity and precision when using CZE buffer of pseudo "pH" 9.0; 1-nitroso-2-naphthol was employed as the internal standard. The separation took approximately 35 min. The ITP-CZE results for rutin, hyperoside, and vitexin-2-O"-rhamnoside were in good accordance with those obtained previously by high-performance liquid chromatography.  相似文献   

4.
In vitro α-glucosidase inhibition assays and ultrafiltration liquid chromatography with photodiode array detection coupled to electrospray ionization tandem mass spectrometry (ultrafiltration LC-DAD-ESI-MS n ) were combined to screen α-glucosidase inhibitors from hawthorn leaf flavonoids extract (HLFE). As a result, four compounds were identified as α-glucosidase inhibitors in the HLFE, and their structures were confirmed to be quercetin-3-O-rha- (1-4)-glc-rha and C-glycosylflavones (vitexin-2″-O-glucoside, vitexin-2″-O-rhamnoside and vitexin) by high-resolution sustained off resonance irradiation collision-induced dissociation (SORI-CID) data obtained by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). Several other C-glycosylflavones (vitexin, isovitexin, orientin, isooriention) and their aglycones apigenin and luteolin were evaluated by in vitro assays, and were found to possess strong α-glucosidase inhibitory activities as well. Moreover, the substituent groups on the flavones had a great impact on the enzyme inhibition activity. C-3′-OH of the B-ring of flavones in particular increased the α-glucosidase inhibition activity, whereas C-glycosylations at C-6 or C-8 of the A ring weakened the inhibition activity.  相似文献   

5.
A capillary electrophoretic method for the separation of four flavones in Crataegus pinnatifida is developed. The four flavones in Crataegus pinnatifida are separated on baseline within 15 min using 50mM borax buffer containing 15% acetonitrile and adjusted to pH 8.15 with phosphoric acid. The detection limits of vitexin-2"-rhamnoside, hyperside, rutin, and vitexin are 0.35, 0.30, 0.40 and, 0.29 microg/mL, respectively. The recovery of these flavones is as follows: vitexn-2"-rhamnoside 96.8%, hyperside 99.9%, rutin 97.1%, and vitexin 97.8%. The results are in accordance with those obtained in the high-performance liquid chromatography system. The content of flavones is higher in Crataegus pinnatifida leaves than in its fruits, and hyperside is not detected in either Crataegus pinnatifida fruits or flowers.  相似文献   

6.
The present study was conducted to determine phenologic and morphogenetic variation of chlorogenic acid and flavonoids, as rutin, hyperoside, apigenin-7-O-glucoside, quercitrin, quercetin and viteksin content of Hypericum montbretii growing in Turkey. Wild growing plants were harvested at vegetative, floral budding, full flowering, fresh fruiting and mature fruiting stages and dissected into stem, leaf and reproductive tissues and assayed for bioactive compounds by HPLC method. Accumulation of rutin and quercetin was not detected in plant parts of H. montbretii during plant growth. Chlorogenic acid and hyperoside content in whole plant was decreased linearly with advancing of development stages and reached their highest level at vegetative stage. On the contrary, apigenin-7-O-glucoside, quercitrin and viteksin content in whole plant increased during the course of seasonal development and the highest level of those compounds was observed at the stage of full flowering. Leaves did not produce apigenin-7-O-glucoside, while viteksin was not detectable in stem and reproductive tissues. Depending on development stages, reproductive parts had the highest level of apigenin-7-O-glucoside and leaves produced major amount of chlorogenic acid, hyperoside and viteksin whereas accumulation of quercitrin was prevailed in stem tissue. Such kind of data could be useful for elucidation of the chemotaxonomical significance of these compounds and medicinal evaluation of this species.  相似文献   

7.
From the aqueous extract (Pc) of Petroselinum crispum (Mill) flat leaves specimens were isolated and identified the flavonoids apigenin (1), apigenin-7-O-glucoside or cosmosiin (2), apigenin-7-O-apiosyl-(1 --> 2)-O-glucoside or apiin (3) and the coumarin 2",3"-dihydroxyfuranocoumarin or oxypeucedanin hydrate (4). The inhibitory activity toward clotting formation and platelet aggregation was assessed for Pc flavonoids (1) and (2), and the coumarin (4). Pc showed no inhibition on clotting activity when compared with the control. On the other hand, a strong antiplatelet aggregation activity was observed for Pc (IC50 = 1.81 mg/mL), apigenin (IC50 = 0.036 mg/mL) and cosmosiin (IC50 = 0.18 mg/mL). In all cases ADP was used as inductor of platelet aggregation. Our results showed that Pc, apigenin and cosmosiin interfere on haemostasis inhibiting platelet aggregation. To the best of our knowledge this is the first report for the cosmosiin antiplatelet aggregation in vitro activity.  相似文献   

8.
A novel electrophoretic BGE containing tungstate as complex-forming reagent is suitable for the separation of polyphenols. Similar to molybdate-containing BGE reported earlier (cf. M. Polásek, et al.., Talanta 2006, 69, 192) addition of tungstate to BGE affects significantly migration of compounds/ligands with vicinal -OH groups due to the formation of negatively charged complexes involving W(VI) as central ion. Baseline separation of mixtures of flavonoids (apigenin, luteolin, hyperoside, quercetin, and rutin) and phenolic acids (chlorogenic and p-coumaric acid) was achieved within 15 min with optimized BGE of pH 7.4 containing 50 mM N-(2-hydroxyethyl)piperazine-2'-(2-ethanesulfonic acid) (HEPES), 2.2 mM tungstate, and 25% v/v of methanol. The separation was performed in a 75 cm (effective length 42 cm)x 75 microm id uncoated fused-silica capillary at 30 kV with spectrophotometric detection at 275 nm. The calibration curves were rectilinear for 25-175 microg/mL of all analytes (cinnamic acid as the internal standard). The LODs ranged from 1.8 to 6 microg/mL for all analytes except for chlorogenic acid. Intraday precision (n = 6) of migration times (RSD < or = 1.2%) and peak areas (RSD < or = 5.6%) was evaluated. The tungstate-based BGEs can be alternatively utilized for the analysis of polyphenols at considerably lower pH than with conventional alkaline borate-based BGEs.  相似文献   

9.
Five flavonoids (catechin, hyperoside, quercitrin, quercetin, and rutin) were separated and determined by capillary electrophoresis with electrochemical detection. Effects of several important factors, such as the pH and concentration of running buffer, separation voltage, injection time, and detection potential were investigated to determine the optimum conditions. The five flavonoids were baseline separated within 20 min in a 60 cm length capillary at a separation voltage of 19.5 kV with a running buffer consisting of 60 mmoL/L Na2B4O7 - 120 mmoL/L NaH2PO4 (pH = 8.8). The relationship between peak current and analyte concentration was linear over about two orders of magnitude with detection limits (S/N = 3) ranging from 0.02 to 0.05 microg/mL for all compounds. This method was successfully used to determine the above five flavonoids in Agrimonia pilosa Ledeb. with relatively simple extraction procedures, and the assay results were satisfactory.  相似文献   

10.
A single-laboratory validation study was conducted on an HPLC method for the detection and quantification of cyanidin-3-O-galactoside (C3Ga), cyanidin-3-O-glucoside (C3GI), cyanidin-3-O-arabinoside (C3Ar), peonidin-3-O-galactoside (P3Ga), and peonidin-3-O-arabinoside (P3Ar) in cranberry fruit (Vaccinium macrocarpon Aiton) raw material and finished products. An extraction procedure using a combination of sonication and shaking with acidified methanol was optimized for all five anthocyanins in freeze-dried cranberry fruit and finished products (commercial extract powder, juice, and juice cocktail). Final extract solutions were analyzed by HPLC using a C18 RP column. Calibration curves for all anthocyanin concentrations had correlation coefficients (r2) of > or = 99.8%. The method detection limits for C3Ga, C3Gl, C3Ar, P3Ga, and P3Ar were estimated to be 0.018, 0.016, 0.006, 0.013, and 0.011 microg/mL, respectively. Separation was achieved with a chromatographic run time of 35 min using a binary mobile phase with gradient elution. Quantitative determination performed in triplicate on four test materials on each of 3 days (n = 12) resulted in RSD(r) from 1.77 to 3.31%. Analytical range, as defined by the calibration curves, was 0.57-36.53 microg/mL for C3Ga, 0.15-9.83 microg/mL for C3GI, 0.28-17.67 microg/mL for C3Ar, 1.01-64.71 microg/mL for P3Ga, and 0.42-27.14 microg/mL for P3Ar. For solid materials prepared by the described method, this translates to 0.06-3.65 mglg for C3Ga, 0.02-0.98 mg/g for C3Gl, 0.03-1.77 mg/g for C3Ar, 0.10-6.47 mg/g for P3Ga, and 0.04-2.71 mg/g for P3Ar.  相似文献   

11.
An ultraviolet spectrophotometric method was validated for total flavonoid quantitation, as rutin equivalents, present in the Trichilia catigua Adr. Juss (Meliaceae) and Ptychopetalum olacoides Bentham (Olacaceae) commercial extract. Parameters as linearity, interval (range), specificity, estimated limit of detection (LOD, microg/mL), estimated limit of quantitation (LOQ, microg/mL), recovery (R, %), precision or relative standard deviation (RSD, %), and accuracy (E, %) were established. The analytical method was validated according to the experimental results: correlation coefficient (r = 0.9997); interval (RSD = 0.15-0.47%; E = 98.98-101.24%); specificity to total flavonoids quantitation, as rutin equivalents, at wavelength 361.0 nm; LOD = 0.09 microg/mL and LOQ = 0.27 microg/mL; R = 99.36-102.14%; adequate intra- and interrun precision (0.30-0.49% and 0.31-0.81%), and intra- and interrun accuracy (100.60-102.38% and 98.58-100.38%).  相似文献   

12.
This study presents a new HPLC method for the simultaneous determination of seven major components, namely chlorogenic acid, caffeic acid, loganin, sweroside, secoxyloganin, rutin and luteolin 7-O-glucoside in Caulis Lonicerae Japonicae, a commonly used traditional Chinese medicinal herb derived from the caulis of Lonicera japonica Thunb. These seven compounds, belonging to the chemical types of phenolic acids, iridoids and flavonoids, were separated on a C18 column (250 x 4.6 mm, 5.0 microm) with the column temperature at 30 degrees C. The mobile phase was composed of (A) aqueous acetic acid (0.4%, v/v) and (B) acetonitrile using a gradient elution of 10% B at 0-12 min, 10-17% B at 12-25 min and 17% B at 25-35 min. The flow rate was 1.0 mL/min and detection wavelength was set at 245 nm. The limit of detection (S/N = 3) ranged from 0.10 to 0.23 microg/mL and the limit of quantification (S/N = 10) ranged from 0.69 to 3.56 microg/mL. All calibration curves showed good linear regression (r2 > 0.9990) within the test ranges. The intra- and inter-day precisions as determined from sample solutions were below 1.24 and 2.28%, respectively. The recoveries for seven compounds were found to range from 94.2 to 103.6%. This verified method has been successfully applied to evaluation of commercial samples of Caulis Lonicerae Japonicae from different markets in China.  相似文献   

13.
Cheng Z  Wang D  Zhang W  Du Y  Wang Y  Zhai Y  Ying X  Kang T 《Natural product research》2012,26(23):2247-2250
This study investigated the pharmacokinetics of hesperidin (HP), ferulic acid (FA) and p-coumaric acid (CA) in rat plasma after oral administration of Portulaca oleracea L. extract (POE). The plasma concentrations were determined by HPLC with vitexin-2″-O-rhamnoside (VR) as internal standard. The calibration curves were linear over the range 0.1-5?μg?mL(-1), 0.1-5?μg?mL(-1)and 0.015-3?μg?mL(-1) for HP, FA and CA, respectively. The validated method was suitable to the pharmacokinetic study of HP, FA and CA in rats after oral administration at a single dose of POE.  相似文献   

14.
A high-performance liquid chromatography (HPLC) with diode array detector (DAD) and electrospray ionization mass spectrometry (ESI-MS) was established for the simultaneous determination of thirteen bioactive compounds in Flos Lonicerae. The optimal chromatographic conditions were obtained on a C(18) column (250x4.6 mm, 5.0 microm) with the column temperature at 30 degrees C. The mobile phase was composed of (A) acetic acid aqueous (0.4%, v/v) and (B) acetonitrile using a gradient elution, the flow rate was 1 ml/min. Detection wavelengths were set at 240 nm for iridoids (loganin, sweroside, secoxyloganin and centauroside), 330 nm for phenolic acids (chlorogenic acid, caffeic acid, 4,5-di-O-caffeoyl quinic acid and 3,4-di-O-caffeoyl quinic acid) and 360 nm for flavonoids (rutin, hyperoside, quercetin-3-O-glucoside, luteolin-7-O-glucoside and lonicerin). The identities of the peaks were accomplished by comparing retention times, UV and mass data with reference compounds under the same conditions. All calibration curves showed good linear regression (r(2)>0.9983) within test ranges. The developed method provided satisfactory precision and accuracy with overall intra-day and inter-day variations of 0.78--1.85% and 1.13--2.36%, respectively, and the overall recoveries of 91.3--104.2% for the thirteen compounds analyzed. The verified method was successfully applied to quantitative determination of the three types of bioactive compounds in ten commercial Flos Lonicerae samples from different markets in China. The analytical results demonstrated that the contents of the thirteen analytes were relatively variant.  相似文献   

15.
Five flavonoids (hyperoside, isoquercitrin, quercitrin, quercetin and rutin) were separated and determined in extracts of Hypericum perforatum leaves or flowers by capillary zone electrophoresis (CZE) with isotachophoretic (ITP) sample pre-treatment using on-line column coupling configuration. The background electrolyte (BGE) used in the CZE step was different from the leading and terminating ITP electrolytes but all the electrolytes contained 20% (v/v) of methanol. The optimal leading electrolyte was 10 mM HCl of pH* approximately 7.2 (adjusted with Tris) and the terminating electrolyte was 50 mM H3BO3 of pH* approximately 8.2 (adjusted with barium hydroxide). This operational system allowed to concentrate and pre-separate selectively the flavonoid fraction from other plant constituents before the introduction of the flavonoids into the CZE capillary. The BGE for the CZE step was 50 mM Tris buffer of pH* approximately 8.75 containing 25 mM N-[tris(hydroxymethyl)methyl]-3-aminopropanesulfonic acid as co-ion and 55 mM H3BO3 as complex-forming agent. The ITP-CZE method with spectrophotometric detection at 254 nm was suitable for the quantitation of the flavonoids in real natural samples; kaempferol was used as internal standard. The limit of detection for quercetin-3-O-glycosides was 100 ng ml(-1) and calibration curves were rectilinear in the range 1-10 microg ml (-1) for most of the analytes. The RSD values ranged between 0.9 and 2.7% (n=3) when determining approximately 0.07-1.2% of the individual flavonoids in dried medicinal plants.  相似文献   

16.
Flavonoids are an important group of natural compounds, which can prevent coronary heart disease and have antioxidant properties. Hawthorn is a well known and widely used medicinal plant due to its cardiotonic activity. Previous studies refer mostly to the HPLC analysis of the flavonoids: vitexin, quercetin, hyperoside, oligomeric procyanidins, which appear to be primarily responsible for the cardiac action of the plant. Aqueous ethanolic extracts of single-styled hawthorn (Crataegus monogyna Jacq., f.: Rosaceae Juss.) leaves and sprouts were analyzed by means of capillary zone electrophoresis (CZE). Influence of vegetation period on the extract qualitative composition and flavonoids quantities was evaluated. Sample preparation by extraction using different concentration of aqueous ethanol (40-96%, v/v) and the influence of extractant composition on the recovery of flavonoids are discussed in detail. The results obtained using CZE are compared to the results of spectrophotometric and HPLC analysis of the extracts. The effect of storage conditions of extracts (solar irradiation, temperature and duration) on degradation of flavonoids was investigated.  相似文献   

17.
Xu X  Ye H  Wang W  Yu L  Chen G 《Talanta》2006,68(3):759-764
Four flavonoids (rutin, hyperoside, quercitrin and quercetin) in Houttuynia cordata Thunb. and Saururus chinensis (Lour.) Bail. were determined by capillary electrophoresis with wall-jet amperometric detection. The working electrode was a 500 μm diameter carbon disc electrode and the detection potential was +0.95 V (versus Ag/AgCl). Effects of several important factors, such as the running buffer and its corresponding pH and concentration, separation voltage, injection time were investigated to acquire the optimum conditions for separation of these four flavonoids. Baseline separation for the four flavonoids was obtained within 21 min in a 60 cm length capillary at a separation voltage of 15 kV with a 60 mmoL/L Na2B4O7-120 mmoL/L NaH2PO4 buffer (pH 8.8) as running buffer. The relationship between peak currents and analyte concentrations was linear over about two orders of magnitude with detection limits (defined as S/N = 3) ranging from 0.02 to 0.05 μg/mL for all analytes. This method was applied for the determination of the above four flavonoids in H. cordata Thunb. and S. chinensis (Lour.) Bail. with simple extraction procedures, and the assay results were satisfactory.  相似文献   

18.
A high-performance capillary electrophoretic (CE) method with electrochemical detection (ED) has been developed for determination of the pharmacologically active flavonoids in Ginkgo biloba L. and phytopharmaceuticals containing its extract. Epicatechin, catechin, rutin, apigenin, luteolin, and quercetin are important flavonoids in this plant. Operated in a wall-jet configuration, a 300 micro m diameter carbon-disk electrode was used as working electrode with good response to the six analytes at +1000 mV (relative to the SCE). Under the optimum conditions, the analytes were separated within 22 min in a borax buffer (pH 9.0). Excellent linearity was obtained over two orders of magnitude and detection limits (S/N=3) ranged from 1.4 x 10(-7) to 5.0 x 10(-7) g mL(-1) for all six analytes. The method was successfully used for assay of Ginkgo biloba L. and its phytopharmaceuticals after a relatively simple extraction procedure; the results obtained were satisfactory.  相似文献   

19.
An LC‐MS/MS method was developed for the first time to simultaneously determine hyperoside and 2′′–O‐galloylhyperin, two major components in Pyrola calliantha extract, in rat plasma. Following extraction by one‐step protein precipitation with methanol, the analytes were separated on a Venusil MP‐C18 column within 2 min, using methanol–water–formic acid (50:50:0.1, v/v/v) as the mobile phase at a flow rate of 0.4 mL/min. Detection was performed on electrospray negative ionization mass spectrometry by multiple‐reaction monitoring of the transitions of 2′′–O‐galloylhyperin at m/z 615.1 → 301.0, of hyperoside at m/z 463.1 → 300.1, and of internal standard at m/z 415.1 → 295.1. The limits of quantification were 2 ng/mL for both hyperoside and 2′′–O‐galloylhyperin. The precisions were <13.1%, and the accuracies were between ?9.1 and 5.5% for both compounds. The method was successfully applied in pharmacokinetic studies following intravenous administration of the total flavonoids of P. calliantha extract in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Flaveria bidentis (L.) Kuntze is an annual alien weed of Flaveria Juss. (Asteraceae) in China. Bioactive compounds, mainly flavonol glycosides and flavones from F. bidentis (L.) Kuntze, have been studied in order to utilize this invasive weed, Analytical high-performance counter-current chromatography (HPCCC) was successfully used to separate patuletin-3-O-glucoside, a mixture of hyperoside (quercetin-3-O-galactoside) and 6-methoxykaempferol-3-O-galactoside, astragalin, quercetin, kaempferol and isorhamnetin using two runs with different solvent system. Ethyl acetate-methanol-water (10:1:10, v/v) was selected by analytical HPCCC as the optimum phase system for the separation of patuletin-3-O-glucoside, a mixture of hyperoside and 6-methoxykaempferol-3-O-galactoside, and astragalin. A Dichloromethane-methanol-water (5:3:2, v/v) was used for the separation of quercetin, kaempferol and isorhamnetin. The separation was then scaled up: the crude extract (ca 1.5 g) was separated by preparative HPCCC, yielding 12 mg of patuletin-3-O-glucoside at a purity of 98.3%, yielding 9 mg of a mixture of hyperoside and 6-methoxykaempferol-3-O-galactoside constituting over 98% of the fraction, and 16 mg of astragalin (kaempferol-3-O-glucoside) at a purity of over 99%. The pump-out peaks are isorhanetin (98% purity), kaemferol (93% purity) and quercitin (99% purity). The chemical structure of patuletin-3-O-glucoside and astragalin were confirmed by MS and 1H, 13C NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号