首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The deposition of copper was found to involve adsorbed monovalent copper which follows nonactivated Temkin isotherm. The presence of nitrilotriacetic acid stabilises it and the second electron transfer is slow.  相似文献   

2.
Voltammetric studies revealed that under transient conditions in the pH range 3.7 to 5.0, the deposition of zinc from ZnSO4 solutions involves the formation of adsorbed monovalent zinc. The conversion of divalent zinc to monovalent is a slow step. In the presence of gluconate, the reduction of divalent complex involves the monovalent zinc complex and the second electron transfer is slow. In the pH range 10 to 12.5, the zinc complex may be [(Zn(GH4)4]2- and is found to vary with gluconate and OH- ions. The conversion of [Zn(GH4)(OH)abs -] to Zn(OH)2 or Zn(GH4)2 is the slow step in the reduction of the complexes. In strong alkali solutions sodium gluconate forms zinc hydroxy gluconate complexes. [Zn(OH)3(GH4)]2- to adsorbed [Zn(OH)(GH4)]- is the slow step in the reduction.  相似文献   

3.
″Ultrathin″ metallization layers on the order of nanometers in thickness are increasingly used in semiconductor interconnects and other nanostructures. Aqueous deposition methods are attractive methods to produce such layers due to their low cost, but formation of ultrathin layers has proven challenging, particularly on oxide-coated substrates. This work focused on the formation of thin copper layers on aluminum, by galvanic displacement from alkaline aqueous solutions. Analysis by atom probe tomography (APT) showed that continuous copper films of approximately 1 nm thickness were formed, apparently the first demonstration of deposition of ultrathin metal layers on oxidized substrates from aqueous solutions. The APT reconstructions indicate that deposited copper replaced a portion of the surface oxide film on aluminum. The results are consistent with mechanisms in which surface hydride species on aluminum mediate deposition, either by directly reducing cupric ions or by inducing electronic conduction in the oxide, thus enabling cupric ion reduction by Al metal.  相似文献   

4.
Zinc–cobalt (Zn–Co) and zinc–nickel (Zn–Ni) alloy electrodeposits each prepared from acid and alkaline formulations were compared for their properties. Compared to alkaline baths, acid baths offer higher metal percent of the alloying element and higher current efficiency. In alkaline baths, the variation of metal percent in deposit with current density is less significant, but that of current efficiency with current density is more. Electrolyte pH does not change significantly in alkaline solutions compared to acid solutions. X-ray diffraction evaluation of Zn–Co deposits from both electrolytes indicated their presence in the η-phase, while Zn–Ni shows pure γ-phase for deposits obtained from alkaline solutions and the existence of γ-phase with traces of η-phase of zinc for deposits obtained from the acid electrolytes. Scanning electron microscope examination shows finer grain structure for deposits obtained from alkaline solutions, and atomic force microscope studies confirm their nanostructure with reduced surface roughness. Deposits obtained from the alkaline baths exhibited higher corrosion resistance probably due to their nanostructure.  相似文献   

5.
Copper(ii), nickel(ii) and zinc(ii) complexes of the peptides Ac-HVVH-NH(2) and Ac-HAAHVVH-NH(2) have been studied by potentiometric, UV-vis, CD, EPR and NMR spectroscopic measurements. Both tetra and heptapeptides can form relatively stable macrochelates with copper(ii), nickel(ii) and zinc(ii) ions, in which the ligands are coordinated via the side-chain imidazole functions. Formation of the macrochelates slightly suppresses, but cannot prevent the copper(ii) and nickel(ii) ion promoted deprotonation and coordination of the amide functionalities. The overall stoichiometry of the major species is [MH(-3)L](-) with a 4N (= N(-),N(-),N(-),N(im)) coordination mode. In the case of Ac-HAAHVVH-NH(2), coordination isomers of this species can exist with a preference for copper(ii) or nickel(ii) binding at the internal histidyl residue. In the copper(ii)-Ac-HAAHVVH-NH(2) system, the presence of the two anchoring sites results in the formation of dinuclear complexes. The existence of these species requires the involvement of amide functions in metal binding. Both equilibrium and spectroscopic data support the fact that the copper(ii) ions of the dinuclear species are independent from each other providing a good chance for the formation of various mixed metal complexes. It was found that zinc(ii) is not able to significantly alter the copper(ii) binding of the heptapeptide, but it can occupy the uncoordinated histidyl sites. The formation of the copper(ii)-nickel(ii) mixed species was obtained in alkaline solutions and CD spectra suggest the statistical distribution of the two metal ions among the histidyl residues. The binding of HAAHVVH to palladium(ii) is exclusive below pH 8 and the mixed metal species of palladium(ii) and copper(ii) ions are formed only in slightly basic solutions.  相似文献   

6.
Initial stages of copper electrocrystallization on platinum rotating and stationary ring-disk electrodes are studied in sulfate electrolytes of different acidities by cyclic voltammetry with a variable cathodic limit. In a weakly acid sodium sulfate solution of pH 3.7, copper deposition occurs at a higher rate than in a sulfuric acid electrolyte, which is due to an acceleration of the discharge of copper ions caused by local electrostatic effects that occur during the specific adsorption of sulfate anions and hydroxyl ions and to alterating nature of electroactive species. The mechanism of the formation of intermediate species (ions Cu+) during the deposition and dissolution of copper in solutions of different acidities is established.  相似文献   

7.
Copper(II) complexes of the pentapeptides Ac-HisAlaHisValHis-NH2, Ac-HisValHisAlaHis-NH2, Ac-HisProHisAlaHis-NH2, Ac-HisAlaHisProHis-NH2, Ac-HisGlyHisValHis-NH2 and Ac-HisValHisGlyHis-NH2 have been studied by potentiometric, UV-Vis, CD and EPR spectroscopic methods. It has been found that the pentapeptides are efficient ligands for the complexation with copper(II) and exhibit an outstanding versatility in the co-ordination geometry of complexes. The presence of three histidyl residues provides a high possibility for the formation of macrochelates via the exclusive binding of imidazole-N donor atoms. The macrochelation suppresses, but cannot preclude the deprotonation and metal ion co-ordination of amide functions and the species [CuH(-2)L] and [Cu2H(-4)L] predominate at physiological pH in equimolar solutions and in the presence of excess metal ions, respectively. It is also clear from the data that both C-terminal and internal histidyl residues can work as the anchoring sites for metal binding and subsequent amide deprotonation resulting in the formation of co-ordination isomers and dinuclear species in equimolar solutions and in the presence of excess metal ions, respectively. In more alkaline solutions (pH approximately 10) a third amide function can be deprotonated and co-ordinated in the species [CuH(-3)L]- with (N-,N-,N-,N(im)) co-ordination. The dinuclear species [Cu2H(-5)L]- and [Cu2H(-6)L](2-) containing hydroxide ions and/or imidazolato bridges are formed at high pH in the presence of excess of metal ions. The insertion of one proline into the sequence preceding histidyl residues hinders the deprotonation of amide functions at that site and the formation of only mononuclear complexes was observed with these peptides.  相似文献   

8.
An electrochemical procedure of anodic deposition of cobalt oxyhydroxide film on a glassy carbon substrate in an alkaline medium (i.e. pH 11.6) is described. The electrodeposited film was obtained either by voltage cycling or by potentiostatic conditions using non-deaerated 0.1 M Na2CO3 solutions containing 40 mM tartrate ions and 4 mM CoCl2. The effects on the film formation and growth, such as tartrate–cobalt ratio, pH, applied potential, etc. were widely evaluated. The electrodeposition process, under anodic conditions and moderately alkaline solutions, most likely involves a redox transition Co(II)→Co(III)/Co(IV) with destruction of the tartrate complex and formation of insoluble oxide/hydroxide cobalt species on the glassy carbon surface. The resulting cobalt oxyhydroxide films were characterised by cyclic voltammetry (CV) in 0.1 M NaOH solutions and by scanning electron microscopy (SEM) analysis after different strategies of preparation and various electrochemical treatments. The electrochemical activity of the deposited films was checked using various organic molecules as model compounds.  相似文献   

9.
Autocatalytic deposition represents a facile, versatile, and scalable wet-chemical tool for nanofabrication. However, the intricate component interplay in plating baths containing multiple metal species impedes alloy deposition. We resolved this challenge in the bimetallic copper-platinum system by exploiting the kinetic stability of platinum complexes, which allows adjusting their ligand sphere and thus reactivity independently from the present copper ions in a preceding, thermally activated ligand exchange step. By using metastable PtIV precursors of varying degrees of complexation, copper-platinum alloys of adjustable atomic ratio were plated from solutions of identical composition and concentration, but differing local coordination environment. Due to its excellent conformity and nanoscale homogeneity, the reaction is compatible with ambitious 3D substrate morphologies, as demonstrated in the template-assisted fabrication of nanotubes with high aspect ratio. The ability to generate additional synthetic degrees of freedom by decoupling the metal complex speciation from the solution composition is of large interest for redox-chemical synthesis techniques, such as electrodeposition or nanoparticle colloid production.  相似文献   

10.
The kinetics of the RuIII-catalysed oxidation of L-leucine and L-isoleucine by alkaline permanganate were studied and compared, spectrophotometrically using a rapid kinetic accessory. The reaction is first order with respect to [oxidant] and [catalyst] with an apparently less than unit order in [substrate] and [alkali] respectively. The results suggest the formation of a complex between the amino acid and the hydroxylated species of ruthenium(III). The complex reacts further with the alkaline permanganate species in a rate-determining step, resulting in the formation of a free radical, which again reacts with the alkaline permanganate species in a subsequent fast step to yield the products. The reaction constants involved in the mechanism were calculated. There is a good agreement between observed and calculated rate constants under different experimental conditions. The activation parameters with respect to the slow step of the mechanism for both the amino acids were calculated and discussed. Of the two amino acids, leucine is oxidised at a faster rate than isoleucine.  相似文献   

11.
The effects of surface pretreatments on the cerium-based conversion coating applied on an AA5083 aluminum alloy were investigated using a combination of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), polarization testing, and electrochemical impedance spectroscopy. Two steps of pretreatments containing acidic or alkaline solutions were applied to the surface to study the effects of surface pretreatments. Among the pretreated samples, the sample prepared by the pretreatment of the alkaline solution then acid washing presented higher corrosion protection (~3 orders of magnitude higher than the sample without pretreatment). This pretreatment provided a more active surface for the deposition of the cerium layer and provided a more suitable substrate for film formation, and made a more uniform film. The surface morphology of samples confirmed that the best surface coverage was presented by alkaline solution then acid washing pretreatment. The presence of cerium in the (EDS) analysis demonstrated that pretreatment with the alkaline solution then acid washing resulted in a higher deposition of the cerium layer on the aluminum surface. After selecting the best surface pretreatment, various deposition times of cerium baths were investigated. The best deposition time was achieved at 10 min, and after this critical time, a cracked film formed on the surface that could not be protective. The corrosion resistance of cerium-based conversion coatings obtained by electrochemical tests were used for training three computational techniques (artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and support vector machine regression (SVMR)) based on Pretreatment-1 (acidic or alkaline cleaning: pH (1)), Pretreatment-2 (acidic or alkaline cleaning: pH (2)), and deposition time in the cerium bath as an input. Various statistical criteria showed that the ANFIS model (R2 = 0.99, MSE = 48.83, and MAE = 3.49) could forecast the corrosion behavior of a cerium-based conversion coating more accurately than other models. Finally, due to the robust performance of ANFIS in modeling, the effect of each parameter was studied.  相似文献   

12.
Conformationally mobile, di-ionizable 1,2-dimethoxy-p-tert-butylcalix[4]arene ligands are synthesized and compared with 1,3-dimethoxyl analogues to probe the influence of regiochemistry on metal ion extraction efficiency and selectivity. Extraction of hard alkali metal and alkaline earth metal cations, intermediate Pb2+, and soft Hg2+ from aqueous solutions into chloroform are utilized to evaluate the effect of this structural variation on the ability of the ligands to complex monovalent and divalent metal ion species.  相似文献   

13.
The solubility and acid-base properties of benzoic acid N,N-dihexylhydrazide (BDHH) were studied. The extraction of copper(II), cobalt(II), nickel(II), zinc(II), iron(III), platinum(II), platinum(IV), chromium(III), chromium(VI), palladium(II), and molybdenum(VI) with this reagent was studied. It was shown that BDHH most efficiently extracts copper(II) from ammonia solutions and chromium(VI) from sulfuric acid solutions. In the extraction of copper(II), complexes with the [Cu(II)]: [BDHH] = 1: 1 and 1: 2 stoichiometries were found to form. The structure of the 1: 2 complex was suggested proceeding from its IR spectra. A copper(II) extraction isotherm was plotted.  相似文献   

14.
Electrodeposition of copper (Cu) involves length scales of a micrometer or even less. Several theoretical techniques such as continuum Monte Carlo, kinetic Monte Carlo (KMC), and molecular dynamics have been used for simulating this problem. However the multiphenomena characteristics of the problem pose a challenge for an efficient simulation algorithm. Traditional KMC methods are slow, especially when modeling surface diffusion with large number of particles and frequent particle jumps. Parameter estimation involving thousands of KMC runs is very time-consuming. Thus a less time-consuming and novel multistep continuum Monte Carlo simulation is carried out to evaluate the step wise free energy change in the process of electrochemical copper deposition. The procedure involves separate Monte Carlo codes employing different random number criterion (using hydrated radii, bare radii, hydration number of the species, redox potentials, etc.) to obtain the number of species (CuCl(2) or CuSO(4) or Cu as the case may be) and in turn the free energy. The effect of concentration of electrolyte, influence of electric field and presence of chloride ions on the free energy change for the processes is studied. The rate determining step for the process of electrodeposition of copper from CuCl(2) and CuSO(4) is also determined.  相似文献   

15.
While free EDTA has no tendency to adsorption on mercury surfaces, its complex with Hg(II) is adsorbed strongly. The coverage is very small in alkaline solutions where HgYOH3? is present, reaches 60% at moderate pH, and is high at pH = 2, where the predominant species in solution is HgYH?. Dependence of peak potential on pH for cathodic stripping voltammetry indicated that for pH > 3, HgY2? is adsorbed at the surface, while at pH 2 the adsorbed complex is protonated. Cyclic chronopotentiometric experiments suggest formation of a coherent film of adsorbed material at pH 2. At pH = 2 adsorption of HgEDTA can be described by a Frumkin isotherm, and at pH = 4.8 by either a virial or HFL isotherm.  相似文献   

16.
The application of ionic liquids for the dissolution of metal oxides is a promising field for the development of more energy- and resource-efficient metallurgical processes. Using such solutions for the production of valuable chemicals or electrochemical metal deposition requires a detailed understanding of the chemical system and the factors influencing it. In the present work, several compounds are reported that crystallize after the dissolution of copper(II) oxide in the ionic liquid [Hbet][NTf2]. Dependent on the initial amount of chloride, the reaction temperature and the purity of the reagent, copper crystallizes in complexes with varying coordination geometries and ligands. Subsequently, the influence of these different complex species on electrochemical properties is shown. For the first time, copper is deposited from the ionic liquid [Hbet][NTf2], giving promising opportunities for more resource-efficient copper plating. The copper coatings were analyzed by SEM and EDX measurements. Furthermore, a mechanism for the decomposition of [Hbet][NTf2] in the presence of chloride is suggested and supported by experimental evidence.  相似文献   

17.
This article concerns a new and clean strategy for the determination of Cu(2+) in electroless copper plating baths with differential spectrophotometry. With this strategy, the problem of too high absorbance of Cu(2+) under plating conditions has been solved. We investigated the influence of copper sulfate, sodium hypophosphite, nickel sulfate, sodium citrate, polyglycol, temperature and pH on the absorption spectrum of Cu(2+) in electroless copper plating baths. Five grams per litre of CuSO(4).5H(2)O solution was selected as the reference solution. Experimental results prove that, this strategy has the merits of fast and high accuracy compared to the traditional techniques. Linearly dependent coefficient of the working curve is 0.9999 and the components in the formula have no obvious effect on the detection of Cu(2+) under experimental conditions. Therefore, we can directly move solutions from the EC plating baths for detection, after that the sample can still go back to the baths without any pollution from the plating process to the environment.  相似文献   

18.
In the present work we studied, for the first time, the kinetics of adsorption of the Co(H(2)O)(6)(2+) species on the "electrolytic solution/gamma-Al(2)O(3)" interface at pH = 7 and 25 degrees C for a very broad range of Co(II) surface concentrations ranged from 0.03 to 6 theoretical Co(H(2)O)(6)(2+) surface layers. Moreover, we studied the surface dissolution of gamma-alumina in the presence of the Co(H(2)O)(6)(2+) ions in the impregnating solution, the contribution of the Co(II) desorption on the whole deposition process and the deposition isotherm. It was found that under the conditions where the deposition has taken place, the dissolution of the gamma-alumina surface is negligible even in the presence of the Co(H(2)O)(6)(2+) species in the impregnating solution. It was, moreover, inferred that the Co(II) desorption does not participate significantly to the whole deposition process. It was found that the deposition kinetics may be described by the following kinetic expression r(Co,bulk) = k'C(Co,bulk)(2), which relates the rate of disappearance of the Co(H(2)O)(6)(2+) ions from the impregnating solution, r(Co,bulk,) with their concentration C(Co,bulk). This kinetic expression may be derived assuming the following deposition scheme: nS + 2[Co(H(2)O)(6)(2+)] --> S(n) - [Co(H(2)O)(x,x)(<)(6)(2+)](2), where S represents the surface reception sites. The above expressions indicated that two Co(H(2)O)(6)(2+) ions are involved, from the side of the interface, in the reaction with the reception sites. It seems probable that the deposition step involves the simultaneous adsorption and dimerization of the two interfacial Co(H(2)O)(6)(2+) ions through (hydr)oxobridges. On the other hand, the sigmoidal form of the deposition isotherm and the dependence of the apparent rate constant, k', on the interfacial Co(II) concentration suggested that the already deposited Co(II) species may be involved in the reception sites, S, promoting the adsorption and resulting to the formation of multinuclear complexes and Co(II) surface precipitates. Finally, reasonable interface potential values for oxides were determined for the first time using kinetic results.  相似文献   

19.
The kinetics of underpotential deposition, three-dimensional nucleation, and growth of copper deposits at cathodic overpotentials on a Pt(111) electrode in solutions containing 0.5 M H2SO4, 10 mM CuSO4, and 0–200 mM acetonitrile (AcN) is studied by the cyclic voltammetry, potentiostatic current transients, and scanning probe microscopy methods. At low volume concentrations of acetonitrile ([AcN] ≤ 4 mM), adsorbed acetonitrile molecules accelerate the formation of a co-adsorption lattice of copper adatoms with anions due to local electrostatic effects at the charged interface. At higher concentrations, the underpotential deposition process is hampered, but the desorption of copper adatoms occurs at potentials more positive than those at low acetonitrile concentrations. This effect is attributed to a stabilizing action of acetonitrile molecules situated on the layer of copper adatoms and, in part, on platinum. At [AcN] = 0.4–40 mM, adsorbed acetonitrile molecules accelerate the growth of the bulk copper deposit, but the nucleation stage is hindered. The dependence of the copper amount on the deposition potential at [AcN] = 40 mM exhibits a maximum at 0.15–0.17 V. This effect was previously observed in weakly acid solutions (pH 1.7–3.0) containing no acetonitrile. The maximum rate of the deposit growth corresponds to an optimum number of crystallites (which is not too great) and an optimum distance between the growing centers in conditions of mixed kinetics “diffusion + electron transfer.” A substantial number of complexes Cu(I)-AcN forms at high acetonitrile concentrations.  相似文献   

20.
TEA CO2 laser-irradiation of equimolar stannane–silane mixture in Ar results in thermal decomposition of both gaseous compounds and chemical vapour deposition of nanostructured films that were analyzed by FTIR and Raman spectroscopy, X-ray diffraction and electron microscopy and shown as composed of crystalline β-Sn nanobodies in amorphous Sn/Si alloy. The co-pyrolytic formation of the Sn/Si alloy involves intermixing/clustering of simultaneously extruded Si and Sn atoms in the gas phase and represents one of few special techniques allowing formation of this rare material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号